Manifestation of ray stochastic behavior in a modal structure of the wave field

被引:12
|
作者
Viroviyansky, AL [1 ]
机构
[1] Russian Acad Sci, Inst Appl Phys, Nizhnii Novgorod 603600, Russia
来源
关键词
D O I
10.1121/1.429447
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
A ray-based mathematical formalism is described to analyze modal structure variations in a range-dependent wave guide. In the scope of this formalism mode amplitudes are expressed through parameters of ray trajectories. Therefore, the approach under consideration provides a convenient tool to study how chaotic ray motion manifests itself in an irregular range dependence of the modal structure. The phenomenon of nonlinear ray-medium resonance playing a crucial role in the emergence of ray chaos has been interpreted from the viewpoint of normal modes. It has been shown that in terms of modes the coexistence of regular and chaotic rays means the presence of regular and irregular constituents of mode amplitudes. An analog to incoherent summation of rays has been proposed to evaluate mode intensities (squared mode amplitudes) smoothed over the mode number. Numerical calculations have shown that it gives correct results for smoothed mode intensities at surprisingly long ranges. (C) 2000 Acoustical Society of America. [S0001-4966(00)01707-0].
引用
收藏
页码:84 / 95
页数:12
相关论文
共 50 条
  • [1] Wave localization as a manifestation of ray chaos in underwater acoustics
    Iomin, A.
    Bliokh, Yu.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2003, 8 (3-4) : 389 - 399
  • [2] The ray approach for analyzing the modal structure of the sound field in a range-dependent waveguide
    Virovlyanskii, AL
    Lyubavin, LY
    Stromkov, AA
    ACOUSTICAL PHYSICS, 2001, 47 (05) : 517 - 523
  • [3] The ray approach for analyzing the modal structure of the sound field in a range-dependent waveguide
    A. L. Virovlyanskii
    L. Ya. Lyubavin
    A. A. Stromkov
    Acoustical Physics, 2001, 47 : 517 - 523
  • [4] Stochastic modal velocity field in rough-wall turbulence
    Ehsani, Roozbeh
    Heisel, Michael
    Puccioni, Matteo
    Hong, Jiarong
    Iungo, Valerio
    Voller, Vaughan
    Guala, Michele
    JOURNAL OF FLUID MECHANICS, 2024, 999
  • [5] For Experimental Modal Analysis in nonlinear Structure Behavior
    Link, M.
    Weiland, M.
    Boeswald, M.
    Laborde, Se
    Calvi, A.
    SCHWINGUNGSANALYSE AND IDENTIFIKATION: MIT FACHAUSSTELLUNG, 2010, 2093 : 373 - 388
  • [6] STOCHASTIC PARTICLE MOTION IN FIELD OF A SINGLE WAVE
    SMITH, GR
    KAUFMAN, AN
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1974, 19 (09): : 891 - 891
  • [7] MANIFESTATION OF OPTICAL PROPERTIES OF AN OBJECT IN WAVE FIELD OF RADIATION IN SCATTERS
    DENISYUK, YN
    DOKLADY AKADEMII NAUK SSSR, 1962, 144 (06): : 1275 - +
  • [8] ON THE MODAL BEHAVIOR OF RECTANGULAR AND DEFORMED PLANAR WAVE-GUIDES
    CHOUDHURY, PK
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 1995, 10 (06) : 333 - 335
  • [9] RELATIVISTIC STRUCTURE OF STOCHASTIC WAVE PARTICLE INTERACTION
    AKIMOTO, K
    KARIMABADI, H
    PHYSICS OF FLUIDS, 1988, 31 (06) : 1505 - 1514
  • [10] QUANTUM-MECHANICAL MANIFESTATION OF CANTORI - WAVE-PACKET LOCALIZATION IN STOCHASTIC REGIONS
    BROWN, RC
    WYATT, RE
    PHYSICAL REVIEW LETTERS, 1986, 57 (01) : 1 - 4