Lp-valued random measures and good extensions of a stochastic basis

被引:0
|
作者
Lebedev, VA [1 ]
机构
[1] MGU, Dept Math & Mech, Moscow 119899, Russia
关键词
good stopping time; sigma-finite L-p-valued random measure; good extension of a stochastic basis; extension of a random measure;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, a development of the author's paper [Theory Probab. Appl., 40 (1995), pp. 645-652], we prove the existence of an extension of an L-p-valued random measure theta in the sense of Bichteler and Jacod Theory and Application of Random Fields, Lecture Notes in Control and Inform. Sci. 49, Springer, Berlin, 1983, pp, 1 [8] under a good (with respect to theta) extension of a stochastic basis, Our main result, Theorem 2, wild announced in [V. A, Lebedev, Proc. 22nd European Meeting of Statisticians and 7th Vilnius Conference on Probability Theory and Mathematical Statistics: Abstracts of Communications, TEV, Vilnius, 1998, p. 298].
引用
收藏
页码:536 / 542
页数:7
相关论文
共 50 条
  • [1] ITO ISOMORPHISMS FOR Lp-VALUED POISSON STOCHASTIC INTEGRALS
    Dirksen, Sjoerd
    ANNALS OF PROBABILITY, 2014, 42 (06): : 2595 - 2643
  • [2] Path properties of lp-valued Gaussian random fields
    Yong-Kab Choi
    Miklós Csörgo
    Science in China Series A: Mathematics, 2007, 50 : 1501 - 1520
  • [3] Path properties of lp-valued Gaussian random fields
    Yong-Kab CHOI
    Miklós CSRGO
    Science in China(Series A:Mathematics), 2007, (10) : 1501 - 1520
  • [4] Path properties of lp-valued Gaussian random fields
    Yong-Kab Choi
    Miklos Csoergo
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2007, 50 (10): : 1501 - 1520
  • [5] Lp-valued stochastic convolution integral driven by Volterra noise
    Coupek, Petr
    Maslowski, Bohdan
    Ondrejat, Martin
    STOCHASTICS AND DYNAMICS, 2018, 18 (06)
  • [6] A law of the iterated logarithm for lp-valued Gaussian random fields
    Choi, Yong-Kab
    Hwang, Kyo-Shin
    Moon, Hee-Jin
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2007, 44 (06) : 1441 - 1451
  • [7] Moduli of continuity for lp-valued Gaussian processes
    Lee, SH
    Choi, YK
    STOCHASTIC ANALYSIS AND APPLICATIONS, VOL 3, 2003, : 89 - 100
  • [8] COEFFICIENT INEQUALITIES FOR LP-VALUED ANALYTIC-FUNCTIONS
    HARRIS, LA
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1981, 24 (03): : 347 - 350
  • [9] How big are the increments of lp-valued Gaussian processes?
    Zhengyan Lin
    Science in China Series A: Mathematics, 1997, 40 : 337 - 349
  • [10] Some limit theorems on the increments of lp-valued Gaussian processes
    Choi, YK
    Lee, SH
    STOCHASTIC ANALYSIS AND APPLICATIONS, VOL 2, 2002, : 39 - 54