Empirical Bayes Estimation for Uniform Distributions with Random Right Censoring

被引:2
|
作者
Liang, Tachen [2 ]
Huang, Wen-Tao [1 ]
机构
[1] Tamkang Univ, Dept Management Sci & Decis Making, Tamsui, Taiwan
[2] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
关键词
Asymptotically optimal; Empirical Bayes; Random censoring; Rate of convergence; Regret; CONVERGENCE-RATES; U(0; THETA);
D O I
10.1080/03610920802645403
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article deals with the empirical Bayes estimation of the parameter in a uniform distribution U(0, ) based on randomly right censored data. By mimicking the form of the Bayes estimator, an empirical Bayes estimator [image omitted] is constructed. The asymptotic optimality of [image omitted] is investigated. It is shown that under certain conditions, [image omitted] is asymptotically optimal with a rate of convergence n-r/2(r+1), where n is the number of past data available when the present estimation problem is considered, and 0 2, and r is a positive integer related to some conditions.
引用
收藏
页码:3713 / 3724
页数:12
相关论文
共 50 条