共 50 条
Dry fiber automated placement of carbon fibrous preforms
被引:59
|作者:
Belhaj, M.
[1
,2
]
Deleglise, M.
[1
,2
]
Comas-Cardona, S.
[1
,2
,3
]
Demouveau, H.
[1
,2
]
Binetruy, C.
[1
,2
,3
]
Duval, C.
[4
]
Figueiredo, P.
[5
]
机构:
[1] Mines Douai, Dept Polymers & Composites Technol & Mech Engn, F-59508 Douai, France
[2] Univ Lille Nord France, F-59000 Lille, France
[3] Ecole Cent Nantes, GeM, F-44321 Nantes 3, France
[4] EADS Innovat Works, F-92152 Suresnes, France
[5] Aerolia Etab Meaulte, F-80302 Meaulte, France
关键词:
Preform;
Carbon fiber;
Mechanical properties;
Lay-up (automated);
COMPRESSION;
BEHAVIOR;
D O I:
10.1016/j.compositesb.2013.01.014
中图分类号:
T [工业技术];
学科分类号:
08 ;
摘要:
The superior material properties of carbon fiber-reinforced composites make them especially attractive for applications in aeronautics and aerospace industries. Cost reduction and time saving are continuously driving industry, leading to new industrial challenges which include manufacturing composite structures with optimal mechanical performances using the potential of advanced processes using robotics. To produce complex part shapes, technologies implying fabric draping in a mold imply large waste amount, fabric structure variability and uncertainties concerning local fiber volume fraction amount and thus final mechanical properties. To overcome such issues and comply with cost and time efficiency, automated dry fiber placement for preform manufacturing is proposed. This approach allows to integrate many functions in a complex part thank to the ability of the robot to steer fiber tows at specific locations. The final composite part is obtained by injecting the produced preform with resin using RTM (Resin Transfer Molding) or infusion process. The presented project aims to define the influence of the process driving parameters during fiber placement on the final preform properties range. Preforms were produced using a lab-scale automated placement demonstrator. Three preforms configurations were tested to highlight the influence of the preform structure on permeability and mechanical parameters through characterization of the compression behavior and permeability of the produced preforms. Choice of configuration will affect mechanical properties on the manufactured preforms, whereas creation of open channels to enhance the flow propagation during manufacturing does not necessarily increase the preform permeability. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:107 / 111
页数:5
相关论文