ZERO-VISCOSITY LIMIT OF THE NAVIER-STOKES EQUATIONS WITH THE NAVIER FRICTION BOUNDARY CONDITION

被引:5
|
作者
Tao, Tao [1 ]
Wang, Wendong [2 ]
Zhang, Zhifei [3 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
[2] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
[3] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
Navier friction boundary condition; zero-viscosity limit; Gevrey class; INVISCID LIMIT; ANALYTIC SOLUTIONS; WELL-POSEDNESS; PRANDTL EQUATIONS; HALF-SPACE; LAYERS; EXISTENCE; STABILITY; EULER; FLOW;
D O I
10.1137/19M1255331
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the zero-viscosity limit of the Navier-Stokes equations in a half space with the Navier friction boundary condition (u(epsilon) - epsilon(gamma)partial derivative(y)u(epsilon)) vertical bar(y=0) = 0, v(epsilon)vertical bar(y=0) = 0, where gamma is an element of (0, 1]. In the case of gamma = 1, the convergence to the Euler equations and the Prandtl equation with the Robin boundary condition is justified for analytic data. In the case of gamma is an element of (0, 1), the convergence to the Euler equations and the linearized Prandtl equation is justified for the data in the Gevrey class 1/gamma.
引用
收藏
页码:1040 / 1095
页数:56
相关论文
共 50 条