Controlling the Fractional-Order Chaotic System Based on Inverse Optimal Control Approach

被引:0
|
作者
Gao, Xin [1 ]
机构
[1] SW Nationalities Univ, Coll Elect Informat & Engn, Chengdu 610041, Sichuan, Peoples R China
关键词
chaos; fractional derivatives and integrals; control; INTEGER;
D O I
10.4028/www.scientific.net/KEM.474-476.108
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we numerically investigate the chaotic behaviors of a fractional-order system. We find that chaotic behaviors exist in the fractional-order system with an order being less than 3. The lowest order we find to have chaos is 2.4 in such system. In addition, we numerically simulate the continuances of the chaotic behaviors in the fractional-order system with orders ranging from 2.7 to 3. Finally, a simple, but effective, linear state feedback controller is proposed for controlling the fractional-order chaotic system based on an inverse optimal control approach. Numerical simulations show the effectiveness and feasibility of the proposed controller.
引用
收藏
页码:108 / 113
页数:6
相关论文
共 50 条
  • [1] Chaotic fractional-order Coullet system: Synchronization and control approach
    Shahiri, M.
    Ghaderi, R.
    Ranjbar N, A.
    Hosseinnia, S. H.
    Momani, S.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (03) : 665 - 674
  • [2] Controlling fractional-order new chaotic system based on Lyapunov equation
    Xu Zhe
    Liu Chong-Xing
    Yang Tao
    [J]. ACTA PHYSICA SINICA, 2010, 59 (03) : 1524 - 1531
  • [3] Control fractional-order continuous chaotic system via a simple fractional-order controller
    Zhang, Dong
    Yang, Shou-liang
    [J]. INDUSTRIAL INSTRUMENTATION AND CONTROL SYSTEMS II, PTS 1-3, 2013, 336-338 : 770 - 773
  • [4] Control and Synchronization of the Fractional-Order Lorenz Chaotic System via Fractional-Order Derivative
    Zhou, Ping
    Ding, Rui
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2012, 2012
  • [5] Chaotic synchronization of a fractional-order system based on washout filter control
    Zhou, Shangbo
    Lin, Xiaoran
    Li, Hua
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (03) : 1533 - 1540
  • [6] Controlling and synchronizing a fractional-order chaotic system using stability theory of a time-varying fractional-order system
    Huang, Yu
    Wang, Dongfeng
    Zhang, Jinying
    Guo, Feng
    [J]. PLOS ONE, 2018, 13 (03):
  • [7] Adaptive control and synchronization of a fractional-order chaotic system
    Li, Chunlai
    Tong, Yaonan
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2013, 80 (04): : 583 - 592
  • [8] Adaptive control and synchronization of a fractional-order chaotic system
    CHUNLAI LI
    YAONAN TONG
    [J]. Pramana, 2013, 80 : 583 - 592
  • [9] Projective synchronization control of fractional-order chaotic system
    Zhang, Fandi
    [J]. PROCEEDINGS OF THE 2018 8TH INTERNATIONAL CONFERENCE ON APPLIED SCIENCE, ENGINEERING AND TECHNOLOGY (ICASET 2018), 2018, 159 : 161 - 164
  • [10] Numerical analysis of a fractional-order chaotic system based on conformable fractional-order derivative
    He, Shaobo
    Sun, Kehui
    Mei, Xiaoyong
    Yan, Bo
    Xu, Siwei
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2017, 132 (01):