Optimal convergence for the finite element method in Campanato spaces

被引:6
|
作者
Dolzmann, G [1 ]
机构
[1] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
关键词
optimal error estimates; finite element methods; Campanato spaces;
D O I
10.1090/S0025-5718-99-01175-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a priori estimates and optimal error estimates for linear finite element approximations of elliptic systems in divergence form with continuous coefficients in Campanato spaces. The proofs rely on discrete analogues of the Campanato inequalities for the solution of the system, which locally measure the decay of the energy. As an application of our results we derive W-1,W-p-estimates and give a new proof of the well-known W-1,W-infinity-results of Rannacher and Scott.
引用
收藏
页码:1397 / 1427
页数:31
相关论文
共 50 条
  • [1] Optimal convergence analysis for the extended finite element method
    Nicaise, Serge
    Renard, Yves
    Chahine, Elie
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2011, 86 (4-5) : 528 - 548
  • [2] Optimal convergence analysis of an immersed interface finite element method
    Chou, So-Hsiang
    Kwak, Do Y.
    Wee, K. T.
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2010, 33 (02) : 149 - 168
  • [3] Optimal convergence analysis of an immersed interface finite element method
    So-Hsiang Chou
    Do Y. Kwak
    K. T. Wee
    Advances in Computational Mathematics, 2010, 33 : 149 - 168
  • [4] Convergence in the finite element method
    Mestrovic, M.
    Gradevinar, 1997, 49 (11): : 623 - 631
  • [5] Quasi-optimal convergence rate for an adaptive finite element method
    Cascon, J. Manuel
    Kreuzer, Christian
    Nochetto, Ricardo H.
    Siebert, Kunibert G.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (05) : 2524 - 2550
  • [6] Convergence of a standard adaptive nonconforming finite element method with optimal complexity
    Mao, Shipeng
    Zhao, Xuying
    Shi, Zhongci
    APPLIED NUMERICAL MATHEMATICS, 2010, 60 (07) : 673 - 688
  • [7] CONVERGENCE AND QUASI-OPTIMAL COMPLEXITY OF A SIMPLE ADAPTIVE FINITE ELEMENT METHOD
    Becker, Roland
    Mao, Shipeng
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2009, 43 (06): : 1203 - 1219
  • [8] Adaptive finite element method for elliptic optimal control problems: convergence and optimality
    Wei Gong
    Ningning Yan
    Numerische Mathematik, 2017, 135 : 1121 - 1170
  • [9] Adaptive finite element method for elliptic optimal control problems: convergence and optimality
    Gong, Wei
    Yan, Ningning
    NUMERISCHE MATHEMATIK, 2017, 135 (04) : 1121 - 1170
  • [10] Convergence of adaptive nonconforming finite element method for Stokes optimal control problems
    Shen, Yue
    Gong, Wei
    Yan, Ningning
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 412