Long-range remote focusing by image-plane aberration correction

被引:5
|
作者
Jiang, Hehai [1 ,2 ]
Wang, Chenmao [1 ,2 ]
Wei, Bowen [1 ,2 ]
Gan, Wenbiao [3 ]
Cai, Dawen [4 ]
Cui, Meng [1 ,2 ,5 ]
机构
[1] Purdue Univ, Bindley Biosci Ctr, W Lafayette, IN 47907 USA
[2] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
[3] NYU, Skirball Inst, Dept Neurosci & Physiol, Dept Anesthesiol,Sch Med, New York, NY 10016 USA
[4] Univ Michigan, Dept Cell & Dev Biol, Ann Arbor, MI 48109 USA
[5] Purdue Univ, Dept Biol, W Lafayette, IN 47907 USA
来源
OPTICS EXPRESS | 2020年 / 28卷 / 23期
基金
美国国家卫生研究院;
关键词
D O I
10.1364/OE.409225
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Laser scanning plays an important role in a broad range of applications. Toward 3D aberration-free scanning, a remote focusing technique has been developed for high-speed imaging applications. However, the implementation of remote focusing often suffers from a limited axial scan range as a result of unknown aberration. Through simple analysis, we show that the sampleto-image path length conservation is crucially important to the remote focusing performance. To enhance the axial scan range, we propose and demonstrate an image-plane aberration correction method. Using a static correction, we can effectively improve the focus quality over a large defocusing range. Experimentally, we achieved three times greater defocusing range than that of conventional methods. This technique can broadly benefit the implementations of high-speed large-volume 3D imaging. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:34008 / 34014
页数:7
相关论文
共 50 条
  • [1] Geometrical image distortion and aberration for long-range targets in a non-homogeneous atmosphere
    de Jong, AN
    OPTICS IN ATMOSPHERIC PROPAGATION AND ADAPTIVE SYSTEMS VII, 2004, 5572 : 139 - 150
  • [2] Camaroptera: A Long-range Image Sensor with Local Inference for Remote Sensing Applications
    Desai, Harsh
    Nardello, Matteo
    Brunelli, Davide
    Lucia, Brandon
    ACM TRANSACTIONS ON EMBEDDED COMPUTING SYSTEMS, 2022, 21 (03)
  • [3] Extended linear detection range for optical tweezers using image-plane detection scheme
    Hajizadeh, Faegheh
    Mousavi, S. Masoumeh
    Khaksar, Zeinab S.
    Reihani, S. Nader S.
    JOURNAL OF OPTICS, 2014, 16 (10)
  • [4] Deflectometry based calibration of a deformable mirror for aberration correction and remote focusing in microscopy
    Temma, Kenta
    Wincott, Matthew
    Fujita, Katsumasa
    Booth, Martin J.
    OPTICS EXPRESS, 2023, 31 (17) : 28503 - 28514
  • [5] LONG-RANGE HETEROATOM EFFECTS - REMOTE OXYGEN
    MUNDY, BP
    WILKENING, D
    JOURNAL OF ORGANIC CHEMISTRY, 1984, 49 (20): : 3779 - 3781
  • [6] Optimization-based correction of a segmented optical telescope using image-plane sensing
    Olivier, PD
    Bernstein, DS
    ACC: Proceedings of the 2005 American Control Conference, Vols 1-7, 2005, : 1491 - 1496
  • [7] Long-range correction for density functional theory
    Tsuneda, Takao
    Hirao, Kimihiko
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2014, 4 (04) : 375 - 390
  • [8] ABERRATION CORRECTION IN ONE-STEP LENS IMAGE PLANE HOLOGRAPHY
    COHEN, BW
    LAKES, RS
    APPLIED OPTICS, 1988, 27 (16): : 3322 - 3323
  • [9] Long-range focusing of magnetic bound states in superconducting lanthanum
    Kim, Howon
    Rozsa, Levente
    Schreyer, Dominik
    Simon, Eszter
    Wiesendanger, Roland
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [10] CONICAL AND TOROIDAL PIEZOELECTRIC POLYMER TRANSDUCERS FOR LONG-RANGE FOCUSING
    YAMADA, K
    SHIMIZU, H
    IEEE TRANSACTIONS ON SONICS AND ULTRASONICS, 1983, 30 (03): : 215 - 215