Multiple Kernel Learning Clustering with an Application to Malware

被引:6
|
作者
Anderson, Blake [1 ,2 ]
Storlie, Curtis [1 ]
Lane, Terran [2 ,3 ]
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[2] Univ New Mexico, Albuquerque, NM 87131 USA
[3] Google Inc, Mountain View, CA 94041 USA
关键词
Multiple Kernel Learning; Spectral Clustering; Semidefinite Programming; Malware;
D O I
10.1109/ICDM.2012.75
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the increasing prevalence of richer, more complex data sources, learning with multiple views is becoming more widespread. Multiple kernel learning (MKL) has been developed to address this problem, but in general, the solutions provided by traditional MKL are restricted to a classification objective function. In this work, we develop a novel multiple kernel learning algorithm that is based on a spectral clustering objective function which is able to find an optimal kernel weight vector for the clustering problem. We go on to show how this optimization problem can be cast as a semidefinite program and efficiently solved using off-the-shelf interior point methods.
引用
收藏
页码:804 / 809
页数:6
相关论文
共 50 条
  • [1] Multiple Kernel Learning Based on Cooperative Clustering
    Du, Haiyang
    Yin, Chuanhuan
    Mu, Shaomin
    [J]. INTELLIGENT COMPUTING METHODOLOGIES, 2014, 8589 : 107 - 117
  • [2] Mutual structure learning for multiple kernel clustering
    Li, Zhenglai
    Tang, Chang
    Zheng, Xiao
    Wan, Zhiguo
    Sun, Kun
    Zhang, Wei
    Zhu, Xinzhong
    [J]. INFORMATION SCIENCES, 2023, 647
  • [3] Multiple Kernel Subspace Learning for Clustering and Classification
    Chi, Ziqiu
    Wang, Zhe
    Wang, Bolu
    Fang, Zhongli
    Zhu, Zonghai
    Li, Dongdong
    Du, Wenli
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (07) : 7278 - 7290
  • [4] Kernel Spectral Clustering for dynamic data using Multiple Kernel Learning
    Peluffo-Ordonez, D.
    Garcia-Vega, S.
    Langone, R.
    Suykens, J. A. K.
    Castellanos-Dominguez, G.
    [J]. 2013 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2013,
  • [5] Consensus Affinity Graph Learning for Multiple Kernel Clustering
    Ren, Zhenwen
    Yang, Simon X.
    Sun, Quansen
    Wang, Tao
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2021, 51 (06) : 3273 - 3284
  • [6] Multiple kernel clustering with pure graph learning scheme
    Li, Xingfeng
    Ren, Zhenwen
    Lei, Haoyun
    Huang, Yuqing
    Sun, Quansen
    [J]. NEUROCOMPUTING, 2021, 424 : 215 - 225
  • [7] Multiple Kernel Clustering with Direct Consensus Graph Learning
    Wang, Yanlong
    Ren, Zhenwen
    [J]. ADVANCES IN INTELLIGENT SYSTEMS AND COMPUTING (ECC 2021), 2022, 268 : 117 - 127
  • [8] Multiple Kernel Learning Based on Discriminative Kernel Clustering for Hyperspectral Band Selection
    Feng, Jie
    Jiao, Licheng
    Sun, Tao
    Liu, Hongying
    Zhang, Xiangrong
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (11): : 6516 - 6530
  • [9] Multiple kernel learning for integrative consensus clustering of omic datasets
    Cabassi, Alessandra
    Kirk, Paul D. W.
    [J]. BIOINFORMATICS, 2020, 36 (18) : 4789 - 4796
  • [10] Local kernels based graph learning for multiple kernel clustering
    Liu, Zheng
    Huang, Shiluo
    Jin, Wei
    Mu, Ying
    [J]. PATTERN RECOGNITION, 2024, 150