Some new statistics for testing hypotheses in parametric models

被引:43
|
作者
Morales, D [1 ]
Pardo, L [1 ]
Vajda, I [1 ]
机构
[1] ACAD SCI CZECH REPUBL,INST INFORMAT THEORY & AUTOMAT,CR-18208 PRAGUE,CZECH REPUBLIC
关键词
parametric models; simple and composite hypotheses; asymptotic distributions of rest statistics; generalized likelihood ratio; Wald's statistic; Rao's statistic; divergence statistics;
D O I
10.1006/jmva.1997.1680
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The paper deals with simple and composite hypotheses in statistical models with i.i.d. observations and with arbitrary families dominated by a finite measures and parametrized by vector-valued variables. It introduces phi-divergence testing statistics as alternatives to the classical ones: the generalized likelihood ratio and the statistics of Wald and Rao. It is shown that, under the assumptions of standard type about hypotheses and model densities, the results about asymptotic distribution of the classical statistics established so far for the counting and Lebesgue dominating measures (discrete and continuous models) remain true also in the general case. Further, these results are extended to the phi-divergence statistics with smooth convex functions phi. The choice of phi-divergence statistics optimal from the point of view of power is discussed and illustrated by several examples. (C) 1997 Academic Press.
引用
收藏
页码:137 / 168
页数:32
相关论文
共 50 条