Latent hardening size effect in small-scale plasticity

被引:30
|
作者
Bardella, Lorenzo [1 ]
Segurado, Javier [2 ,3 ]
Panteghini, Andrea [1 ]
Llorca, Javier [2 ,3 ]
机构
[1] Univ Brescia, DICATAM, I-25123 Brescia, Italy
[2] Univ Politecn Madrid, Dept Mat Sci, ETS Ingn Caminos, E-28040 Madrid, Spain
[3] IMDEA Mat Inst, Madrid 28906, Spain
关键词
GRADIENT CRYSTAL PLASTICITY; DISCRETE DISLOCATION PLASTICITY; SMALL-DEFORMATION; SINGLE-CRYSTALS; ACCOUNTS; ENERGY; FORMULATIONS; MODEL;
D O I
10.1088/0965-0393/21/5/055009
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We aim at understanding the multislip behaviour of metals subject to irreversible deformations at small-scales. By focusing on the simple shear of a constrained single-crystal strip, we show that discrete Dislocation Dynamics (DD) simulations predict a strong latent hardening size effect, with smaller being stronger in the range [1.5 mu m, 6 mu m] for the strip height. We attempt to represent the DD pseudo-experimental results by developing a flow theory of Strain Gradient Crystal Plasticity (SGCP), involving both energetic and dissipative higher-order terms and, as a main novelty, a strain gradient extension of the conventional latent hardening. In order to discuss the capability of the SGCP theory proposed, we implement it into a Finite Element (FE) code and set its material parameters on the basis of the DD results. The SGCP FE code is specifically developed for the boundary value problem under study so that we can implement a fully implicit (Backward Euler) consistent algorithm. Special emphasis is placed on the discussion of the role of the material length scales involved in the SGCP model, from both the mechanical and numerical points of view.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Size effect on strength and strain hardening of small-scale [111] nickel compression pillars
    Frick, C. P.
    Clark, B. G.
    Orso, S.
    Schneider, A. S.
    Arzt, E.
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2008, 489 (1-2): : 319 - 329
  • [2] The use of Laue microdiffraction to study small-scale plasticity
    H. Van Swygenhoven
    S. Van Petegem
    [J]. JOM, 2010, 62 : 36 - 43
  • [3] Small-scale plasticity in thin Cu and Al films
    Dehm, G
    Balk, TJ
    Edongué, H
    Arzt, E
    [J]. MICROELECTRONIC ENGINEERING, 2003, 70 (2-4) : 412 - 424
  • [4] The Use of Laue Microdiffraction to Study Small-scale Plasticity
    Van Swygenhoven, H.
    Van Petegem, S.
    [J]. JOM, 2010, 62 (12) : 36 - 43
  • [5] Small-scale plasticity: Insights into dislocation avalanche velocities
    Maass, Robert
    Derlet, Peter M.
    Greer, Julia R.
    [J]. SCRIPTA MATERIALIA, 2013, 69 (08) : 586 - 589
  • [6] Micro-plasticity and recent insights from intermittent and small-scale plasticity
    Maass, R.
    Derlet, P. M.
    [J]. ACTA MATERIALIA, 2018, 143 : 338 - 363
  • [7] A latent threat to biodiversity: consequences of small-scale heterogeneity loss
    Hewitt, Judi
    Thrush, Simon
    Lohrer, Andrew
    Townsend, Michael
    [J]. BIODIVERSITY AND CONSERVATION, 2010, 19 (05) : 1315 - 1323
  • [8] A latent threat to biodiversity: consequences of small-scale heterogeneity loss
    Judi Hewitt
    Simon Thrush
    Andrew Lohrer
    Michael Townsend
    [J]. Biodiversity and Conservation, 2010, 19 : 1315 - 1323
  • [9] Finite-Size Dark Matter and its Effect on Small-Scale Structure
    Chu, Xiaoyong
    Garcia-Cely, Camilo
    Murayama, Hitoshi
    [J]. PHYSICAL REVIEW LETTERS, 2020, 124 (04)
  • [10] Influence of test temperature on the size effect in molybdenum small-scale compression pillars
    Schneider, A. S.
    Frick, C. P.
    Arzt, E.
    Clegg, W. J.
    Korte, S.
    [J]. PHILOSOPHICAL MAGAZINE LETTERS, 2013, 93 (06) : 331 - 338