Quantitative approximation of the discrete Moran process by a Wright-Fisher diffusion

被引:0
|
作者
Gackou, Gorgui [1 ]
Guillin, Arnaud [1 ]
Personne, Arnaud [1 ]
机构
[1] Univ Clermont Auvergne, CNRS, UMR 6620, Lab Math Blaise Pascal, Ave Landais, F-63177 Aubiere, France
关键词
60J70; ENVIRONMENTAL STOCHASTICITY; FIXATION;
D O I
10.1007/s00285-020-01520-y
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Moran discrete process and the Wright-Fisher model are the most popular models in population genetics. The Wright-Fisher diffusion is commonly used as an approximation in order to understand the dynamics of population genetics models. Here, we give a quantitative large-population limit of the error occurring by using the approximating diffusion in the presence of weak selection and weak immigration in one dimension. The approach is robust enough to consider the case where selection and immigration are Markovian processes, whose large-population limit is either a finite state jump process, or a diffusion process.
引用
收藏
页码:575 / 602
页数:28
相关论文
共 50 条
  • [1] Quantitative approximation of the discrete Moran process by a Wright–Fisher diffusion
    Gorgui Gackou
    Arnaud Guillin
    Arnaud Personne
    Journal of Mathematical Biology, 2020, 81 : 575 - 602
  • [2] MORAN PROCESS AND WRIGHT-FISHER PROCESS FAVOR LOW VARIABILITY
    Rychtar, Jan
    Taylor, Dewey T.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, 26 (07): : 3491 - 3504
  • [3] Bridging Wright-Fisher and Moran models
    Alexandre, Arthur
    Abbara, Alia
    Fruet, Cecilia
    Loverdo, Claude
    Bitbol, Anne-Florence
    JOURNAL OF THEORETICAL BIOLOGY, 2025, 599
  • [4] ERROR ESTIMATE FOR DIFFUSION APPROXIMATION OF WRIGHT-FISHER MODEL
    ETHIER, SN
    NORMAN, MF
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1977, 74 (11) : 5096 - 5098
  • [5] A dual process for the coupled Wright-Fisher diffusion
    Favero, Martina
    Hult, Henrik
    Koski, Timo
    JOURNAL OF MATHEMATICAL BIOLOGY, 2021, 82 (1-2)
  • [6] The common ancestor process for a Wright-Fisher diffusion
    Taylor, Jesse E.
    ELECTRONIC JOURNAL OF PROBABILITY, 2007, 12 : 808 - 847
  • [7] Wright-Fisher diffusion bridges
    Griffiths, Robert C.
    Jenkins, Paul A.
    Spano, Dario
    THEORETICAL POPULATION BIOLOGY, 2018, 122 : 67 - 77
  • [8] INTERTWINING OF THE WRIGHT-FISHER DIFFUSION
    Hudec, Tobias
    KYBERNETIKA, 2017, 53 (04) : 730 - 746
  • [9] FILTERING THE WRIGHT-FISHER DIFFUSION
    Chaleyat-Maurel, Mireille
    Genon-Catalot, Valentine
    ESAIM-PROBABILITY AND STATISTICS, 2009, 13 : 197 - 217
  • [10] EXACT SIMULATION OF THE WRIGHT-FISHER DIFFUSION
    Jenkins, Paul A.
    Spano, Dario
    ANNALS OF APPLIED PROBABILITY, 2017, 27 (03): : 1478 - 1509