EXMULF: An Explainable Multimodal Content-Based Fake News Detection System

被引:3
|
作者
Amri, Sabrine [1 ]
Sallami, Dorsaf [1 ]
Aimeur, Esma [1 ]
机构
[1] Univ Montreal, Dept Comp Sci & Operat Res DIRO, Montreal, PQ, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Fake news; Multimodal detection; Explainability;
D O I
10.1007/978-3-031-08147-7_12
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this work, we present an explainable multimodal content-based fake news detection system. It is concerned with the veracity analysis of information based on its textual content and the associated image, together with an Explainable AI (XAI) assistant. To the best of our knowledge, this is the first study that aims to provide a fully explainable multimodal content-based fake news detection system using Latent Dirichlet Allocation (LDA) topic modeling, Vision-and-Language BERT (VilBERT) and Local Interpretable Model-agnostic Explanations (LIME) models. Our experiments on two real-world datasets demonstrate the relevance of learning the connection between two modalities, with an accuracy that exceeds 10 state-of-the-art fake news detection models.
引用
收藏
页码:177 / 187
页数:11
相关论文
共 50 条
  • [1] TAI: a lightweight network for content-based fake news detection
    Ye, Na
    Yu, Dingguo
    Ma, Xiaoyu
    Zhou, Yijie
    Yan, Yanqin
    [J]. ONLINE INFORMATION REVIEW, 2024, 48 (05) : 857 - 868
  • [2] Exploiting Content Characteristics for Explainable Detection of Fake News
    Muñoz, Sergio
    Iglesias, Carlos Á.
    [J]. Big Data and Cognitive Computing, 2024, 8 (10)
  • [3] dEFEND: A System for Explainable Fake News Detection
    Cui, Limeng
    Shu, Kai
    Wang, Suhang
    Lee, Dongwon
    Liu, Huan
    [J]. PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM '19), 2019, : 2961 - 2964
  • [4] MFIR: Multimodal fusion and inconsistency reasoning for explainable fake news detection
    Wu, Lianwei
    Long, Yuzhou
    Gao, Chao
    Wang, Zhen
    Zhang, Yanning
    [J]. INFORMATION FUSION, 2023, 100
  • [5] Content-Based Fake News Detection With Machine and Deep Learning: a Systematic Review
    Capuano, Nicola
    Fenza, Giuseppe
    Loia, Vincenzo
    Nota, Francesco David
    [J]. NEUROCOMPUTING, 2023, 530 : 91 - 103
  • [6] Fake News Detection Based on Multimodal Inputs
    Liang, Zhiping
    [J]. CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 75 (02): : 4519 - 4534
  • [7] Multimodal Approaches based on Fake News Detection
    Reddy, Bandi Sravani
    Siva Kumar, A.P.
    [J]. Proceedings of the 3rd International Conference on Artificial Intelligence and Smart Energy, ICAIS 2023, 2023, : 751 - 755
  • [8] dEFEND: Explainable Fake News Detection
    Shu, Kai
    Cui, Limeng
    Wang, Suhang
    Lee, Dongwon
    Liu, Huan
    [J]. KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 395 - 405
  • [9] A Survey on Explainable Fake News Detection
    Mishima, Ken
    Yamana, Hayato
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2022, E105D (07) : 1249 - 1257
  • [10] Multimodal Fake News Detection
    Segura-Bedmar, Isabel
    Alonso-Bartolome, Santiago
    [J]. INFORMATION, 2022, 13 (06)