HIGH-ORDER MULTI-MATERIAL ALE HYDRODYNAMICS

被引:56
|
作者
Anderson, Robert W. [1 ]
Dobrev, Veselin A. [1 ]
Kolev, Tzanio V. [1 ]
Rieben, Robert N. [2 ]
Tomov, Vladimir Z. [1 ]
机构
[1] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94550 USA
[2] Lawrence Livermore Natl Lab, Design Phys Div, Weap & Complex Integrat, Livermore, CA 94550 USA
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2018年 / 40卷 / 01期
关键词
hydrodynamics; ALE methods; multi-material flow; finite elements; curvilinear meshes; high-order methods; LAGRANGIAN-EULERIAN METHODS; FINITE-ELEMENT-METHOD; INTERFACE RECONSTRUCTION; CLOSURE-MODEL; REMAP; OPTIMIZATION; COMPUTATIONS; ADVECTION; DYNAMICS; MESHES;
D O I
10.1137/17M1116453
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a new approach for multi-material arbitrary Lagrangian-Eulerian (ALE) hydrodynamics simulations based on high-order finite elements posed on high-order curvilinear meshes. The method builds on and extends our previous work in the Lagrangian [V. A. Dobrev, T. V. Kolev, and R. N. Rieben, SIAM T. Sci. Comput., 34 (2012), pp. B606-B641] and remap [R. W. Anderson et al., Internat. T. Numer. Methods Fluids, 77 (2015), pp. 249-273] phases of ALE, and depends critically on a functional perspective that enables subzonal physics and material modeling [V. A. Dobrev et al., Internat. T. Numer. Methods Fluids, 82 (2016), pp. 689-706]. Curvilinear mesh relaxation is based on node movement, which is determined through the solution of an elliptic equation. The remap phase is posed in terms of advecting state variables between two meshes over a fictitious time interval. The resulting advection equation is solved by a discontinuous Galerkin (DG) formulation, combined with a customized Flux Corrected Transport (FCT) type algorithm. Because conservative fields are remapped, additional synchronization steps are introduced to preserve bounds with respect to primal fields. These steps include modification of the low-order FCT solutions, definition of conservative FCT fluxes based on primal field bounds, and monotone transitions between primal and conservative fields. This paper describes the mathematical formulation and properties of our approach and reports a number of numerical results from its implementation in the BLAST code [BLAST: High-order finite element Lagrangian hydrocode, http://www.11nl.gov/CASC/blast]. Additional details can be found in [R. W. Anderson et al., High-Order Multi-Material ALE Hydrodynamics (Extended Version), Tech. report LLNL-JRNL-706339, Lawrence Livermore National Laboratory, Livermore, CA, 2016].
引用
收藏
页码:B32 / B58
页数:27
相关论文
共 50 条
  • [1] Adaptive methods for multi-material ALE hydrodynamics
    Rider, W. J.
    Love, E.
    Wong, M. K.
    Strack, O. E.
    Petney, S. V.
    Labreche, D. A.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2011, 65 (11-12) : 1325 - 1337
  • [2] Multi-material closure model for high-order finite element Lagrangian hydrodynamics
    Dobrev, V. A.
    Kolev, T. V.
    Rieben, R. N.
    Tomov, V. Z.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2016, 82 (10) : 689 - 706
  • [3] On the design of stable, consistent, and conservative high-order methods for multi-material hydrodynamics
    Pandare, Aditya K.
    Waltz, Jacob
    Li, Weizhao
    Luo, Hong
    Bakosi, Jozsef
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 490
  • [5] Hybrid remap for multi-material ALE
    Kucharik, M.
    Breil, J.
    Galera, S.
    Maire, P-H
    Berndt, M.
    Shashkov, M.
    [J]. COMPUTERS & FLUIDS, 2011, 46 (01) : 293 - 297
  • [6] A matrix-free hyperviscosity formulation for high-order ALE hydrodynamics
    Bello-Maldonado, Pedro D.
    Kolev, Tzanio, V
    Rieben, Robert N.
    Tomov, Vladimir Z.
    [J]. COMPUTERS & FLUIDS, 2020, 205
  • [7] Simulation-driven optimization of high-order meshes in ALE hydrodynamics
    Dobrev, Veselin
    Knupp, Patrick
    Kolev, Tzanio
    Mittal, Ketan
    Rieben, Robert
    Tomov, Vladimir
    [J]. COMPUTERS & FLUIDS, 2020, 208
  • [8] Multi-Material ALE methods in unstructured grids
    Peery, JS
    Carroll, DE
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2000, 187 (3-4) : 591 - 619
  • [9] On the computation of multi-material flows using ALE formulation
    Luo, H
    Baum, JD
    Löhner, R
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 194 (01) : 304 - 328
  • [10] On the computation of multi-material flows using ALE formulation
    Luo, H
    Baum, JD
    Löhner, R
    [J]. COMPUTATIONAL FLUID DYNAMICS 2002, 2003, : 577 - 582