Inverse Problems in the Class of Distance-Regular Graphs of Diameter 4

被引:0
|
作者
Makhnev, A. A. [1 ,2 ]
Paduchikh, D., V [1 ]
机构
[1] Russian Acad Sci, Krasovskii Inst Math & Mech, Ural Branch, Ekaterinburg 620108, Russia
[2] Ural Fed Univ, Ekaterinburg 620000, Russia
基金
中国国家自然科学基金; 俄罗斯基础研究基金会;
关键词
distance-regular graph; antipodal graph; graph Gamma with strongly regular graph Gamma i; j;
D O I
10.1134/S0081543822030105
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a distance-regular graph Gamma of diameter 4, the graph Delta = Gamma(1,2) can be strongly regular. In this case, the graph Gamma(3,4) is strongly regular and complementary to Delta. Finding the intersection array of Gamma from the parameters of Gamma(3,4) is an inverse problem. In the present paper, the inverse problem is solved in the case of an antipodal graph Gamma of diameter 4. In this case, r = 2 and Gamma(3,4) is a strongly regular graph without triangles. Further, Gamma is an AT4(p, q, r)-graph only in the case q = p + 2 and r = 2. Earlier the authors proved that an AT4(p,p + 2, 2)-graph does not exist. A Krein graph is a strongly regular graph without triangles for which the equality in the Krein bound is attained (equivalently, q(22)(2) = 0). A Krein graph Kre(r) with the second eigenvalue r has parameters ((r(2) + 3r)(2), r(3) + 3r(2) + r, 0 r(2) + r ) . For the graph Kre(r), the antineighborhood of a vertex is strongly regular with parameters ((r(2) + 2r - 1)(r(2) + 3r + 1), r(3) + 2r(2), 0, r(2)) and the intersection of the antineighborhoods of , two adjacent vertices is strongly regularly with parameters ((r(2) + 2r)(r(2) + 2r - 1 ), r(3) + r(2) - r, 0, r(2) - r). Let Gamma Gamma be an antipodal graph of diameter 4, and let Delta = Gamma(3,4) be a strongly regular graph without triangles. In this paper it is proved that Delta cannot be a graph with parameters ((r(2) + 2r - 1)(r(2) + 3r + 1), r(3) + 2r(2), 0, r(2)), and if Delta is a graph with parameters ((r(2) + 2r)(r(2) + 2r - 1), r(3) + r(2) - r, 0, r(2) - r), then r > 3. It is proved that a distance-regular graph with intersection array {32, 27, 12(r - 1)/r, 1; 1, 12/r, 27, 32} exists only for r = 3, and, for a graph with array {96, 75, 32(r - 1)/r, 1; 1, 32/r, 75, 96}, we have r = 2.
引用
收藏
页码:S121 / S129
页数:9
相关论文
共 50 条
  • [1] Inverse problems in the class of distance-regular graphs of diameter 4
    Makhnev, A. A.
    Paduchikh, D., V
    [J]. TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2022, 28 (01): : 199 - 208
  • [2] ON THE MAXIMUM DIAMETER OF A CLASS OF DISTANCE-REGULAR GRAPHS
    DAMERELL, RM
    GEORGIACODIS, MA
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1981, 13 (JUL) : 316 - 322
  • [3] Inverse problems in the theory of distance-regular graphs
    Makhnev, Aleksandr Alekseevich
    Paduchikh, Dmitrii Viktorovich
    [J]. TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2018, 24 (03): : 133 - 144
  • [4] Inverse Problems in the Theory of Distance-Regular Graphs
    Makhnev, A. A.
    Paduchikh, D. V.
    [J]. PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2019, 307 (SUPPL 1) : 88 - 98
  • [5] Inverse Problems in the Theory of Distance-Regular Graphs
    A. A. Makhnev
    D. V. Paduchikh
    [J]. Proceedings of the Steklov Institute of Mathematics, 2019, 307 : 88 - 98
  • [6] Valency of distance-regular antipodal graphs with diameter 4
    Miklavic, S
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2002, 23 (07) : 845 - 849
  • [7] A Bound for the Diameter of Distance-Regular Graphs
    L. Pyber
    [J]. Combinatorica, 1999, 19 : 549 - 553
  • [8] THE DIAMETER OF BIPARTITE DISTANCE-REGULAR GRAPHS
    TERWILLIGER, P
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1982, 32 (02) : 182 - 188
  • [9] A bound for the diameter of distance-regular graphs
    Pyber, L
    [J]. COMBINATORICA, 1999, 19 (04) : 549 - 553
  • [10] On geometric distance-regular graphs with diameter three
    Bang, Sejeong
    Koolen, J. H.
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2014, 36 : 331 - 341