Data Augmentation for Hyperspectral Image Classification With Deep CNN

被引:134
|
作者
Li, Wei [1 ]
Chen, Chen [1 ]
Zhang, Mengmeng [1 ]
Li, Hengchao [2 ]
Du, Qian [3 ]
机构
[1] Beijing Univ Chem Technol, Coll Informat Sci & Technol, Beijing 100029, Peoples R China
[2] Southwest Jiaotong Univ, Sichuan Prov Key Lab Informat Coding & Transmiss, Chengdu 610031, Sichuan, Peoples R China
[3] Mississippi State Univ, Dept Elect & Comp Engn, Starkville, MS 39762 USA
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Convolutional neural network (CNN); data augmentation; hyperspectral imagery (HSI); pattern classification; SPECTRAL-SPATIAL CLASSIFICATION; EXTINCTION PROFILES; REPRESENTATION; SPARSE;
D O I
10.1109/LGRS.2018.2878773
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Convolutional neural network (CNN) has been widely used in hyperspectral imagery (HSI) classification. Data augmentation is proven to be quite effective when training data size is relatively small. In this letter, extensive comparison experiments are conducted with common data augmentation methods, which draw an observation that common methods can produce a limited and up-bounded performance. To address this problem, a new data augmentation method, named as pixel-block pair (PBP), is proposed to greatly increase the number of training samples. The proposed method takes advantage of deep CNN to extract PBP features, and decision fusion is utilized for final label assignment. Experimental results demonstrate that the proposed method can outperform the existing ones.
引用
收藏
页码:593 / 597
页数:5
相关论文
共 50 条
  • [1] Deep CNN and Data Augmentation for Skin Lesion Classification
    Tri-Cong Pham
    Luong, Chi-Mai
    Visani, Muriel
    Van-Dung Hoang
    [J]. INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2018, PT II, 2018, 10752 : 573 - 582
  • [2] Hyperspectral image classification using a deep relation network with random replacement data augmentation
    Lu, Xinhua
    Hao, Jiaxuan
    Wang, Hua
    Qiao, Jianliang
    Huang, Junbo
    [J]. REMOTE SENSING LETTERS, 2024, 15 (08) : 805 - 815
  • [3] Hyperspectral Image Classification With Data Augmentation and Classifier Fusion
    Wang, Cong
    Zhang, Lei
    Wei, Wei
    Zhang, Yanning
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (08) : 1420 - 1424
  • [4] Hyperspectral Image Classification Using Random Occlusion Data Augmentation
    Haut, Juan Mario
    Paoletti, Mercedes E.
    Plaza, Javier
    Plaza, Antonio
    Li, Jun
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2019, 16 (11) : 1751 - 1755
  • [5] Superpixelwise PCA based data augmentation for hyperspectral image classification
    Gao, Shang
    Jiang, Xinwei
    Zhang, Yongshan
    Liu, Xiaobo
    Xiong, Qianjin
    Cai, Zhihua
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2024,
  • [6] DCNR: deep cube CNN with random forest for hyperspectral image classification
    Tao Li
    Jiabing Leng
    Lingyan Kong
    Song Guo
    Gang Bai
    Kai Wang
    [J]. Multimedia Tools and Applications, 2019, 78 : 3411 - 3433
  • [7] DCNR: deep cube CNN with random forest for hyperspectral image classification
    Li, Tao
    Leng, Jiabing
    Kong, Lingyan
    Guo, Song
    Bai, Gang
    Wang, Kai
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (03) : 3411 - 3433
  • [8] A New Data Augmentation Technique for the CNN-based Classification of Hyperspectral Imagery
    Accion Montes, Alvaro
    Heras, Dora B.
    Arguello, Francisco
    [J]. IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXVII, 2021, 11862
  • [9] CNN HYPERSPECTRAL IMAGE CLASSIFICATION USING TRAINING SAMPLE AUGMENTATION WITH GENERATIVE ADVERSARIAL NETWORKS
    Neagoe, Victor-Emil
    Diaconescu, Paul
    [J]. 2020 13TH INTERNATIONAL CONFERENCE ON COMMUNICATIONS (COMM), 2020, : 515 - 519
  • [10] Deep Ensembles for Hyperspectral Image Data Classification and Unmixing
    Nalepa, Jakub
    Myller, Michal
    Tulczyjew, Lukasz
    Kawulok, Michal
    [J]. REMOTE SENSING, 2021, 13 (20)