MicroRNA-204 protects H9C2 cells against hypoxia/reoxygenation-induced injury through regulating SIRT1-mediated autophagy

被引:43
|
作者
Qiu, Ruixia [1 ]
Li, Wen [2 ]
Liu, Yunhai [2 ]
机构
[1] 1 Peoples Hosp Jining City, Dept Med Affairs, Jining, Shandong, Peoples R China
[2] 1 Peoples Hosp Jining City, Dept Emergency, 6 Jiankang Rd, Jining 272011, Shandong, Peoples R China
关键词
microRNA-204; H9C2; cells; Hypoxia/reoxygenation injury; Apoptosis; Autophagy; SIRT1; ISCHEMIA/REPERFUSION INJURY; MYOCARDIAL-INFARCTION; APOPTOSIS; CARDIOMYOCYTES; EXPRESSION; TARGET; SIRT1;
D O I
10.1016/j.biopha.2018.01.165
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Ischemia/reperfusion (I/R) injury is a main cause of acute myocardial infarction, and the pathogenesis of I/R injury is still not definitely confirmed. In the present study, we aimed to explore the roles of miR-204 in hypoxia/reoxygenation (H/R)-induced cardiomyocyte injury in vitro. The H9C2 cells were subjected to hypoxia for 12 h followed by reoxygenation for another 24 h, and we found that miR-204 was significantly down-regulated after H/R treatment. Transfection of miR-204 mimics attenuated the H/R-induced impaired cell viability and increased apoptosis rates. Furthermore, SIRT1 was identified as a direct target of miR-204, and its expression is negatively regulated by miR-204. Forced expression of SIRT1 could partly rescue the effects of miR-204 on H/Rinduced apoptosis and autophagy. Taken together, our study first revealed that overexpression of miR-204 has a protective effect against myocardial I/R injury.
引用
收藏
页码:15 / 19
页数:5
相关论文
共 50 条
  • [1] Lycopene protects against apoptosis in hypoxia/reoxygenation-induced H9C2 myocardioblast cells through increased autophagy
    Chen, Fei
    Sun, Ze-Wei
    Ye, Li-Fang
    Fu, Guo-Sheng
    Mou, Yun
    Hu, Shen-Jiang
    MOLECULAR MEDICINE REPORTS, 2015, 11 (02) : 1358 - 1365
  • [2] Neocryptotanshinone protects cardiomyocyte hypoxia/reoxygenation-induced H9C2 cell injury through targeting RxRα
    MA Lin
    CHEN Xu
    SHAO Ming-yan
    WANG Yong
    中国药理学与毒理学杂志, 2019, 33 (09) : 693 - 694
  • [3] Exenatide protects against hypoxia/reoxygenation-induced apoptosis by improving mitochondrial function in H9c2 cells
    Chang, Guanglei
    Zhang, Dongying
    Liu, Jian
    Zhang, Peng
    Ye, Lin
    Lu, Kai
    Duan, Qin
    Zheng, Aihua
    Qin, Shu
    EXPERIMENTAL BIOLOGY AND MEDICINE, 2014, 239 (04) : 414 - 422
  • [4] HO-1 Protects against Hypoxia/Reoxygenation-Induced Mitochondrial Dysfunction in H9c2 Cardiomyocytes
    Chen, Dongling
    Jin, Zhe
    Zhang, Jingjing
    Jiang, Linlin
    Chen, Kai
    He, Xianghu
    Song, Yinwei
    Ke, Jianjuan
    Wang, Yanlin
    PLOS ONE, 2016, 11 (05):
  • [5] Glaucocalyxin A Protects H9c2 Cells Against Hypoxia/Reoxygenation-Induced Injury Through the Activation of Akt/Nrf2/HO-1 Pathway
    Peng, Zhuo
    Zhang, Rui
    Pan, Longfei
    Pei, Honghong
    Niu, Zequn
    Wang, Hai
    Lv, Junhua
    Dang, Xiaoyan
    CELL TRANSPLANTATION, 2020, 29
  • [6] Imperatorin protects H9c2 cardiomyoblasts cells from hypoxia/reoxygenation-induced injury through activation of ERK signaling pathway
    Liao, Bihong
    Chen, Ruimian
    Lin, Feng
    Mai, Aihuan
    Chen, Jie
    Li, Huimin
    Dong, Shaohong
    Xu, Zhenglei
    SAUDI PHARMACEUTICAL JOURNAL, 2017, 25 (04) : 615 - 619
  • [7] Inhibition of microRNA-101 attenuates hypoxia/reoxygenation-induced apoptosis through induction of autophagy in H9c2 cardiomyocytes
    Wu, Dongkai
    Jiang, Haihe
    Chen, Shengxi
    Zhang, Heng
    MOLECULAR MEDICINE REPORTS, 2015, 11 (05) : 3988 - 3994
  • [8] Plantamajoside protects H9c2 cells against hypoxia/reoxygenation-induced injury through regulating the akt/Nrf2/HO-1 and NF-κB signaling pathways
    Zeng, Guangwei
    An, Huixian
    Fang, Dong
    Wang, Wei
    Han, Yang
    Lian, Cheng
    JOURNAL OF RECEPTORS AND SIGNAL TRANSDUCTION, 2022, 42 (02) : 125 - 132
  • [10] HDMP from Astragalus membranaceus Protects H9c2 Cardiomyocytes Against Hypoxia/Reoxygenation-induced Injury via Mitochondria-mediated Pathway
    Mao, Yani
    Kou, Fengjun
    Bi, Yun
    LATIN AMERICAN JOURNAL OF PHARMACY, 2017, 36 (12): : 2403 - 2410