We prove a conjecture of Lacey and Li in the case that the vector field depends only on one variable. Specifically: let v be a vector field defined on the unit square such that v(x, y) = (1, u(x)) for some measurable u : [0, 1] -> [0, 1]. Let delta be a small parameter, and let R be the collection of rectangles R of a fixed width such that delta much of the vector field inside R is pointed in (approximately) the same direction as R. We show that the operator defined by [GRAPHICS] is bounded on L-p for p > 1 with constants comparable to 1/delta.
机构:
Univ Cambridge, Ctr Math Sci, Dept Pure Math & Math Stat, Cambridge CB3 0WB, EnglandUniv Cambridge, Ctr Math Sci, Dept Pure Math & Math Stat, Cambridge CB3 0WB, England
Bateman, Michael
Thiele, Christoph
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bonn, Math Inst, D-53115 Bonn, GermanyUniv Cambridge, Ctr Math Sci, Dept Pure Math & Math Stat, Cambridge CB3 0WB, England
机构:
Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
Univ Cambridge, Dept Pure Math & Math Stat, Ctr Math Sci, Cambridge CB3 0WB, EnglandUniv Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA