Additive structure of totally positive quadratic integers

被引:5
|
作者
Hejda, Tomas [1 ,2 ]
Kala, Vitezslav [1 ]
机构
[1] Charles Univ Prague, Dept Algebra, FMP, Sokolovska 49-83, Prague 18600, Czech Republic
[2] Univ Chem & Technol, FCE, Dept Math, Studentska 2031-6, Prague 16000, Czech Republic
关键词
11R11; 11A55; 20M05; 20M14; REAL; FORMS; NUMBERS; RANK;
D O I
10.1007/s00229-019-01143-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
LetK=Q(D)\documentclass be a real quadratic field. We consider the additive semigroupOK+(+)\documentclass of totally positive integers inKand determine its generators (indecomposable integers) and relations; they can be nicely described in terms of the periodic continued fraction forD\documentclass. We also characterize all uniquely decomposable integers inKand estimate their norms. Using these results, we prove that the semigroupOK+(+)\documentclass completely determines the real quadratic fieldK.
引用
收藏
页码:263 / 278
页数:16
相关论文
共 50 条
  • [1] Additive structure of totally positive quadratic integers
    Tomáš Hejda
    Vítězslav Kala
    [J]. manuscripta mathematica, 2020, 163 : 263 - 278
  • [2] The trace of totally positive algebraic integers
    Aguirre, J
    Bilbao, M
    Peral, JC
    [J]. MATHEMATICS OF COMPUTATION, 2006, 75 (253) : 385 - 393
  • [3] The measure of totally positive algebraic integers
    Mu, Quanwu
    Wu, Qiang
    [J]. JOURNAL OF NUMBER THEORY, 2013, 133 (01) : 12 - 19
  • [4] ADDITIVE PARTITIONS OF THE POSITIVE INTEGERS
    HOGGATT, VE
    [J]. FIBONACCI QUARTERLY, 1980, 18 (03): : 220 - 226
  • [5] Representations of Positive Integers by Positive Quadratic Forms
    Tekcan, Ahmet
    Ozkoc, Arzu
    Gezer, Betul
    Bizim, Osman
    [J]. SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2011, 35 (01) : 137 - 148
  • [6] Potential energy of totally positive algebraic integers
    Cherubini, Giacomo
    Yatsyna, Pavlo
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 516 (02)
  • [7] The absolute trace of totally positive algebraic integers
    Flammang, V
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2019, 15 (01) : 173 - 181
  • [8] THE TRACE OF TOTALLY POSITIVE AND REAL ALGEBRAIC INTEGERS
    SIEGEL, CL
    [J]. ANNALS OF MATHEMATICS, 1945, 46 (02) : 302 - 312
  • [9] Some remarks on totally positive algebraic integers
    Stan, Ana-maria
    Stan, Florin
    [J]. BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2023, 66 (04): : 373 - 379
  • [10] THE TRACE PROBLEM FOR TOTALLY POSITIVE ALGEBRAIC INTEGERS
    Liang, Yanhua
    Wu, Qiang
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2011, 90 (03) : 341 - 354