Anion-redox nanolithia cathodes for Li-ion batteries

被引:0
|
作者
Zhu, Zhi [1 ,2 ]
Kushima, Akihiro [1 ,2 ]
Yin, Zongyou [1 ,2 ]
Qi, Lu [3 ]
Amine, Khalil [4 ]
Lu, Jun [4 ]
Li, Ju [1 ,2 ]
机构
[1] MIT, Dept Nucl Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[3] Peking Univ, Coll Chem & Mol Engn, Beijing 100871, Peoples R China
[4] Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA
来源
NATURE ENERGY | 2016年 / 1卷
关键词
OXYGEN; DISPROPORTIONATION; LINI0.5MN1.5O4; MOBILITY;
D O I
10.1038/NENERGY.2016.111
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The development of lithium-air batteries is plagued by a high potential gap (>1.2 V) between charge and discharge, and poor cyclability due to the drastic phase change of O-2 (gas) and Ox- (condensed phase) at the cathode during battery operations. Here we report a cathode consisting of nanoscale amorphous lithia (nanolithia) confined in a cobalt oxide, enabling charge/discharge between solid Li2O/Li2O2/LiO2 without any gas evolution. The cathode has a theoretical capacity of 1,341 Ah kg(-1), a mass density exceeding 2.2 g cm(-3), and a practical discharge capacity of 587 Ah kg(-1) at 2.55V versus Li/Li+. It also displays stable cycling performance (only 1.8% loss after 130 cycles in lithium-matched full-cell tests against Li4Ti5O12 anode), as well as a round-trip overpotential of only 0.24V. Interestingly, the cathode is automatically protected from O-2 gas release and overcharging through the shuttling of self-generated radical species soluble in the carbonate electrolyte.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Anion-redox nanolithia cathodes for Li-ion batteries
    Zhu Z.
    Kushima A.
    Yin Z.
    Qi L.
    Amine K.
    Lu J.
    Li J.
    [J]. Nature Energy, 1 (8)
  • [2] Anion-redox batteries and lithium metal protection
    Li, Ju
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [3] Storage characteristics of cathodes for Li-ion batteries
    Pistoia, G
    Antonini, A
    Rosati, R
    Zane, D
    [J]. ELECTROCHIMICA ACTA, 1996, 41 (17) : 2683 - 2689
  • [4] The role of O2 in O-redox cathodes for Li-ion batteries
    House, Robert A.
    Marie, John-Joseph
    Perez-Osorio, Miguel A.
    Rees, Gregory J.
    Boivin, Edouard
    Bruce, Peter G.
    [J]. NATURE ENERGY, 2021, 6 (08) : 781 - 789
  • [5] The role of O2 in O-redox cathodes for Li-ion batteries
    Robert A. House
    John-Joseph Marie
    Miguel A. Pérez-Osorio
    Gregory J. Rees
    Edouard Boivin
    Peter G. Bruce
    [J]. Nature Energy, 2021, 6 : 781 - 789
  • [6] Iron-based cathodes/anodes for Li-ion and post Li-ion batteries
    Okada, S
    Yamaki, J
    [J]. JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2004, 10 (07) : 1104 - 1113
  • [7] LI-ION BATTERIES Li gradients for Li-rich cathodes
    Toney, Michael F.
    [J]. NATURE ENERGY, 2019, 4 (12) : 1014 - 1015
  • [8] FABRICATION AND CHARACTERIZATION OF NANOSTRUCTURED CATHODES FOR LI-ION BATTERIES
    Jibhakate, Piyush D.
    Nelson, George J.
    [J]. PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2016, VOL. 6A, 2017,
  • [9] The intriguing question of anionic redox in high-energy density cathodes for Li-ion batteries
    Saubanere, M.
    McCalla, E.
    Tarascon, J. -M.
    Doublet, M. -L.
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (03) : 984 - 991
  • [10] Redox Behaviors of Ni and Cr with Different Counter Cations in Spinel Cathodes for Li-Ion Batteries
    Liu, Dongqiang
    Han, Jiantao
    Dontigny, Martin
    Charest, Patrick
    Guerfi, Abdelbast
    Zaghib, Karim
    Goodenough, John B.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (07) : A770 - A775