Informatics-aided bandgap engineering for solar materials

被引:117
|
作者
Dey, Partha [1 ]
Bible, Joe [2 ]
Datta, Somnath [2 ]
Broderick, Scott [1 ]
Jasinski, Jacek [3 ]
Sunkara, Mahendra [3 ]
Menon, Madhu [4 ]
Rajan, Krishna [1 ]
机构
[1] Iowa State Univ, Ames, IA 50011 USA
[2] Univ Louisville, Dept Bioinformat & Biostat, Louisville, KY 40202 USA
[3] Univ Louisville, Dept Chem Engn, Louisville, KY 40202 USA
[4] Univ Kentucky, Ctr Computat Sci, Lexington, KY 40506 USA
基金
美国国家科学基金会;
关键词
Compound semi-conductors; Bandgap; Chalcopyrites; Informatics; Solar materials; CHALCOPYRITE SEMICONDUCTORS; ROUGH SETS; DESIGN; CHEMISTRY; DISCOVERY; SELECTION;
D O I
10.1016/j.commatsci.2013.10.016
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper predicts the bandgaps of over 200 new chalcopyrite compounds for previously untested chemistries. An ensemble data mining approach involving Ordinary Least Squares (OLS), Sparse Partial Least Squares (SPLS) and Elastic Net/Least Absolute Shrinkage and Selection Operator (Lasso) regression methods coupled to Rough Set (RS) and Principal Component Analysis (PCA) methods was used to develop robust quantitative structure - activity relationship (QSAR) type models for bandgap prediction. The output of the regression analyses is the predicted bandgap for new compounds based on a model using the descriptors most related to bandgap. Feature ranking algorithms were then employed to: (i) assess the connection between bandgap and the chemical descriptors used in the predictive models; and (ii) understand the cause of outliers in the predictions. This paper provides a descriptor guided selection strategy for identifying new potential chalcopyrite chemistries materials for solar cell applications. (C) 2013 Elsevier B. V. All rights reserved.
引用
收藏
页码:185 / 195
页数:11
相关论文
共 50 条
  • [1] CHAIN: unlocking informatics-aided design of Li metal anode from materials to applications
    Li-Sheng Zhang
    Xin-Lei Gao
    Xin-Hua Liu
    Zheng-Jie Zhang
    Rui Cao
    Han-Chao Cheng
    Ming-Yue Wang
    Xiao-Yu Yan
    Shi-Chun Yang
    [J]. Rare Metals, 2022, (05) : 1477 - 1489
  • [2] CHAIN: unlocking informatics-aided design of Li metal anode from materials to applications
    Li-Sheng Zhang
    Xin-Lei Gao
    Xin-Hua Liu
    Zheng-Jie Zhang
    Rui Cao
    Han-Chao Cheng
    Ming-Yue Wang
    Xiao-Yu Yan
    Shi-Chun Yang
    [J]. Rare Metals, 2022, 41 : 1477 - 1489
  • [3] CHAIN: unlocking informatics-aided design of Li metal anode from materials to applications
    Zhang, Li-Sheng
    Gao, Xin-Lei
    Liu, Xin-Hua
    Zhang, Zheng-Jie
    Cao, Rui
    Cheng, Han-Chao
    Wang, Ming-Yue
    Yan, Xiao-Yu
    Yang, Shi-Chun
    [J]. RARE METALS, 2022, 41 (05) : 1477 - 1489
  • [4] Data-Driven Materials Exploration for Li-Ion Conductive Ceramics by Exhaustive and Informatics-Aided Computations
    Nakayama, Masanobu
    Kanamori, Kenta
    Nakano, Koki
    Jalem, Randy
    Takeuchi, Ichiro
    Yamasaki, Hisatsugu
    [J]. CHEMICAL RECORD, 2019, 19 (04): : 771 - 778
  • [5] Informatics-Aided Raman Microscopy for Nanometric 3D Stress Characterization
    Wang, Hongxin
    Zhang, Han
    Da, Bo
    Shiga, Motoki
    Kitazawa, Hideaki
    Fujita, Daisuke
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (13): : 7187 - 7193
  • [6] Electronic structure characterization and bandgap engineering of solar hydrogen materials
    Guo, Jinghua
    [J]. SOLAR HYDROGEN AND NANOTECHNOLOGY II, 2007, 6650
  • [7] Engineering materials informatics
    Cebon, D.
    Ashby, M. F.
    [J]. MRS BULLETIN, 2006, 31 (12) : 1004 - 1012
  • [8] Engineering Materials Informatics
    D. Cebon
    M.F. Ashby
    [J]. MRS Bulletin, 2006, 31 : 1004 - 1012
  • [9] Prediction of IC50 of 2,5-diaminobenzophenone organic derivatives using informatics-aided genetic algorithm
    Heidarimoghadam, Rashid
    Mortazavi, Seyede Shima
    Farmany, Abbas
    [J]. IRANIAN CHEMICAL COMMUNICATION, 2018, 6 (04) : 437 - 449
  • [10] Bandgap Engineering boosts solar cell efficiency
    不详
    [J]. PHOTONICS SPECTRA, 2014, 48 (02) : 17 - 17