A Bayesian semi-parametric model for colorectal cancer incidences

被引:11
|
作者
Zhang, S
Sun, DC
He, CZ
Schootman, M
机构
[1] Univ Missouri, Dept Stat, Columbia, MO 65211 USA
[2] Washington Univ, Sch Med, St Louis, MO 63110 USA
关键词
spatial corellation; non-linear temporal trend; intrinsic autoregressive priors; Wishart priors; Cholesky decomposition;
D O I
10.1002/sim.2221
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
A Bayesian semi-parametric model is proposed to capture the interaction among demographic effects (age and gender), spatial effects (county) and temporal effects of colorectal cancer incidences simultaneously. In particular, an extension of multivariate conditionally autoregressive (CAR) processes to a partially informative Gaussian demographic spatial-temporal CAR (DSTCAR) process for a spatialtemporal setting is proposed. The precision matrix of the Gaussian DSTCAR process is the Kronecker product of several components. The spatial component is modelled with a CAR prior. A pth order intrinsic autoregressive prior (IAR(p)) is implemented for the temporal component to estimate a smoothed and non-parametric temporal trend. The demographic component is modelled with a Wishart prior. Data analysis shows significant spatial correlation only exists in the age group of 50-59. Males and females in their 50s and 60s show fairly strong correlation. The hypothesis testing based on Bayes factor suggests that gender correlation cannot be ignored in this model. Copyright (c) 2006 John Wiley & Sons, Ltd.
引用
收藏
页码:285 / 309
页数:25
相关论文
共 50 条
  • [1] Bivariate Semi-Parametric Model: Bayesian Inference
    Debashis Samanta
    Debasis Kundu
    [J]. Methodology and Computing in Applied Probability, 2023, 25
  • [2] Bivariate Semi-Parametric Model: Bayesian Inference
    Samanta, Debashis
    Kundu, Debasis
    [J]. METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2023, 25 (04)
  • [3] A Bayesian semi-parametric model for thermal proteome profiling
    Fang, Siqi
    Kirk, Paul D. W.
    Bantscheff, Marcus
    Lilley, Kathryn S.
    Crook, Oliver M.
    [J]. COMMUNICATIONS BIOLOGY, 2021, 4 (01)
  • [4] A Bayesian semi-parametric model for thermal proteome profiling
    Siqi Fang
    Paul D. W. Kirk
    Marcus Bantscheff
    Kathryn S. Lilley
    Oliver M. Crook
    [J]. Communications Biology, 4
  • [5] A Bayesian semi-parametric bivariate failure time model
    Nieto-Barajas, Luis E.
    Walker, Stephen G.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 51 (12) : 6102 - 6113
  • [6] A semi-parametric Bayesian model for semi-continuous longitudinal data
    Ren, Junting
    Tapert, Susan
    Fan, Chun Chieh
    Thompson, Wesley K.
    [J]. STATISTICS IN MEDICINE, 2022, 41 (13) : 2354 - 2374
  • [7] Bayesian semi-parametric ROC analysis
    Erkanli, Alaattin
    Sung, Minje
    Costello, E. Jane
    Angold, Adrian
    [J]. STATISTICS IN MEDICINE, 2006, 25 (22) : 3905 - 3928
  • [8] Particle learning for Bayesian semi-parametric stochastic volatility model
    Virbickaite, Audrone
    Lopes, Hedibert F.
    Concepcion Ausin, M.
    Galeano, Pedro
    [J]. ECONOMETRIC REVIEWS, 2019, 38 (09) : 1007 - 1023
  • [9] Transformations in semi-parametric Bayesian synthetic likelihood
    Priddle, Jacob W.
    Drovandi, Christopher
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2023, 187
  • [10] A semi-parametric Bayesian approach to average bioequivalence
    Ghosh, Pulak
    Rosner, Gary L.
    [J]. STATISTICS IN MEDICINE, 2007, 26 (06) : 1224 - 1236