Nanostructured materials for electrochemical energy conversion and storage devices

被引:2035
|
作者
Guo, Yu-Guo [1 ]
Hu, Jin-Song [1 ]
Wan, Li-Jun [1 ]
机构
[1] Chinese Acad Sci, Inst Chem, Beijing Natl Lab Mol Sci, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1002/adma.200800627
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
One of the greatest challenges for our society is providing powerful electrochemical energy conversion and storage devices. Rechargeable lithium-ion batteries and fuel cells are amongst the most promising candidates in terms of energy densities and power densities. Nanostructured materials are currently of interest for such devices because of their high surface area, novel size effects, significantly enhanced kinetics, and so on. This Progress Report describes some recent developments in nanostructured anode and cathode materials for lithium-ion batteries, addressing the benefits of nanometer-size effects, the disadvantages of 'nano', and strategies to solve these issues such as nano/micro hierarchical structures and surface coatings, as well as developments in the discovery of nanostructured Pt-based electrocatalysts for direct methanol fuel cells (DMFCs). Approaches to lowering the cost of Pt catalysts include the use of i) novel nanostructures of Pt, ii) new cost-effective synthesis routes, iii) binary or multiple catalysts, and iv) new catalyst supports.
引用
收藏
页码:2878 / 2887
页数:10
相关论文
共 50 条
  • [1] Nanostructured materials for energy storage and energy conversion devices
    Reisner, DE
    Xiao, TD
    Strutt, PR
    Salkind, AJ
    [J]. IECEC-97 - PROCEEDINGS OF THE THIRTY-SECOND INTERSOCIETY ENERGY CONVERSION ENGINEERING CONFERENCE, VOLS 1-4: VOL.1: AEROSPACE POWER SYSTEMS AND TECHNOL; VOL 2: ELECTROCHEMICAL TECHNOL, CONVERSION TECHNOL, THERMAL MANAGEMENT; VOLS 3: ENERGY SYSTEMS, RENEWABLE ENERGY RESOURCES, ENVIRONMENTAL IMPACT, POLICY IMPACTS ON ENERGY; VOL 4: POST DEADLINE PAPERS, INDEX, 1997, : 1311 - 1316
  • [2] Nanostructured Electrochemical Devices for Sensing, Energy Conversion and Storage
    Sunseri, Carmelo
    Cocchiara, Cristina
    Ganci, Fabrizio
    Moncada, Alessandra
    Oliveri, Roberto Luigi
    Patella, Bernardo
    Piazza, Salvatore
    Inguanta, Rosalinda
    [J]. INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY BASED INNOVATIVE APPLICATIONS FOR THE ENVIRONMENT, 2016, 47 : 43 - 48
  • [3] Electrochemical synthesis of nanostructured materials for electrochemical energy conversion and storage
    Li, Gao-Ren
    Xu, Han
    Lu, Xue-Feng
    Feng, Jin-Xian
    Tong, Ye-Xiang
    Su, Cheng-Yong
    [J]. NANOSCALE, 2013, 5 (10) : 4056 - 4069
  • [4] Nanostructured materials for advanced energy conversion and storage devices
    Antonino Salvatore Aricò
    Peter Bruce
    Bruno Scrosati
    Jean-Marie Tarascon
    Walter van Schalkwijk
    [J]. Nature Materials, 2005, 4 : 366 - 377
  • [5] Nanostructured materials for advanced energy conversion and storage devices
    Aricò, AS
    Bruce, P
    Scrosati, B
    Tarascon, JM
    Van Schalkwijk, W
    [J]. NATURE MATERIALS, 2005, 4 (05) : 366 - 377
  • [6] Nanostructured electrode materials for electrochemical energy storage and conversion
    Shukla, A. K.
    Kumar, T. Prem
    [J]. WILEY INTERDISCIPLINARY REVIEWS-ENERGY AND ENVIRONMENT, 2013, 2 (01) : 14 - 30
  • [7] Nanostructured electrode materials for electrochemical energy storage and conversion
    Manthiram, A.
    Murugan, A. Vadivel
    Sarkar, A.
    Muraliganth, T.
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2008, 1 (06) : 621 - 638
  • [8] Nanostructured energy materials for electrochemical energy conversion and storage: A review
    Xueqiang Zhang
    Xinbing Cheng
    Qiang Zhang
    [J]. Journal of Energy Chemistry, 2016, 25 (06) : 967 - 984
  • [9] Nanostructured energy materials for electrochemical energy conversion and storage: A review
    Zhang, Xueqiang
    Cheng, Xinbing
    Zhang, Qiang
    [J]. JOURNAL OF ENERGY CHEMISTRY, 2016, 25 (06) : 967 - 984
  • [10] Advanced Materials for Electrochemical Energy Conversion and Storage Devices
    Santos, Diogo M. F.
    Sljukic, Biljana
    [J]. MATERIALS, 2021, 14 (24)