CONVEX HULL DEVIATION AND CONTRACTIBILITY

被引:1
|
作者
Ivanov, Grigory M. [1 ,2 ]
机构
[1] Ecole Polytech Fed Lausanne, Route Cantonale, CH-1015 Lausanne, Switzerland
[2] Moscow Inst Phys & Technol, Dept Higher Math, Inst Pereulok 9, Dolgoprudnyi 141700, Moscow Region, Russia
基金
俄罗斯基础研究基金会; 瑞士国家科学基金会;
关键词
Hausdorff distance; characterization of inner product spaces; contractibility of a union of balls;
D O I
10.12775/TMNA.2016.089
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Hausdorff distance between a set and its convex hull. Let X be a Banach space, define the CHD-constant of the space X as the supremum of this distance over all subsets of the unit ball in X. In the case of finite dimensional Banach spaces we obtain the exact upper bound of the CHD-constant depending on the dimension of the space. We give an upper bound for the CHD-constant in Lp spaces. We prove that the CHD-constant is not greater than the maximum of Lipschitz constants of metric projection operators onto hyperplanes. This implies that for a Hilbert space the CHD-constant equals 1. We prove a characterization of Hilbert spaces and study the contractibility of proximally smooth sets in a uniformly convex and uniformly smooth Banach space.
引用
收藏
页码:9 / 25
页数:17
相关论文
共 50 条
  • [1] On the convex hull and homothetic convex hull functions of a convex body
    Ákos G. Horváth
    Zsolt Lángi
    [J]. Geometriae Dedicata, 2022, 216
  • [2] On the convex hull and homothetic convex hull functions of a convex body
    Horvath, Akos G.
    Langi, Zsolt
    [J]. GEOMETRIAE DEDICATA, 2022, 216 (01)
  • [3] α-Concave hull, a generalization of convex hull
    Asaeedi, Saeed
    Didehvar, Farzad
    Mohades, Ali
    [J]. THEORETICAL COMPUTER SCIENCE, 2017, 702 : 48 - 59
  • [5] Gaussian convex hull
    不详
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2006, 113 (08): : 762 - 763
  • [6] CONVEX HULL OF A SAMPLE
    FISHER, LD
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1966, 72 (03) : 555 - &
  • [7] On Sumsets and Convex Hull
    Boeroeczky, Karoly J.
    Santos, Francisco
    Serra, Oriol
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2014, 52 (04) : 705 - 729
  • [8] On Sumsets and Convex Hull
    Károly J. Böröczky
    Francisco Santos
    Oriol Serra
    [J]. Discrete & Computational Geometry, 2014, 52 : 705 - 729
  • [9] Extended convex hull
    Fukuda, K
    Liebling, TM
    Lütolf, C
    [J]. COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2001, 20 (1-2): : 13 - 23
  • [10] CONVEX_HULL - A Pascal program for determining the convex hull for planar sets
    Yamamoto, Jorge Kazuo
    [J]. Computers and Geosciences, 1997, 23 (07): : 725 - 738