3D reacting flow analysis of LANTR nozzles

被引:0
|
作者
Stewart, MEM [1 ]
Krivanek, TM [1 ]
Hemminger, JA [1 ]
Bulman, MJ [1 ]
机构
[1] NASA, Glenn Res Ctr, QSS Grp Inc, 21000 Brookpark Rd,MS 142-4, Cleveland, OH 44135 USA
关键词
nuclear propulsion;
D O I
暂无
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This paper presents performance predictions for LANTR nozzles and the system implications for their use in a manned Mars mission. The LANTR concept is rocket thrust augmentation by injecting Oxygen into the nozzle to combust the Hydrogen exhaust of a Nuclear Thermal Rocket. The performance predictions are based on three-dimensional reacting flow simulations using VULCAN. These simulations explore a range Of O-2/H-2 mixture ratios, injector configurations, and concepts. These performance predictions are used for a trade analysis within a system study for a manned Mars mission. Results indicate that the greatest benefit of LANTR will occur with In-Situ Resource Utilization (ISRU). However, Hydrogen propellant volume reductions may allow greater margins for fitting tanks within the launch vehicle where packaging issues occur.
引用
收藏
页码:858 / +
页数:2
相关论文
共 50 条
  • [1] Reacting Flow Simulation of Rocket Nozzles
    Shyji, S.
    Kumar, N. Asok
    Jayachandran, T.
    Deepu, M.
    [J]. FLUID MECHANICS AND FLUID POWER - CONTEMPORARY RESEARCH, 2017, : 1485 - 1495
  • [2] ANALYSIS OF STEADY, 2-DIMENSIONAL, CHEMICALLY REACTING, NONEQUILIBRIUM, INVISCID FLOW IN NOZZLES
    STILES, RJ
    HOFFMAN, JD
    [J]. AIAA JOURNAL, 1985, 23 (03) : 342 - 348
  • [3] LES of turbulent flow in 3D skew blade passage of a reacting hydro turbine
    Zhang, LX
    Wang, WQ
    [J]. MODERN PHYSICS LETTERS B, 2005, 19 (28-29): : 1487 - 1490
  • [4] 3D simulation of polyurethane foam injection and reacting mold flow in a complex geometry
    Ozdemir, I. Bedii
    Akar, Firat
    [J]. HEAT AND MASS TRANSFER, 2018, 54 (05) : 1281 - 1288
  • [5] 3D simulation of polyurethane foam injection and reacting mold flow in a complex geometry
    İ. Bedii Özdemir
    Fırat Akar
    [J]. Heat and Mass Transfer, 2018, 54 : 1281 - 1288
  • [6] DESIGN OF MAXIMUM THRUST NOZZLES FOR NONEQUILIBRIUM CHEMICALLY REACTING FLOW
    TAYLOR, AA
    HOFFMAN, JD
    [J]. AIAA JOURNAL, 1974, 12 (10) : 1299 - 1300
  • [7] Improvements in Windowless Spectroscopy: 3D Printed Nozzles
    Buchmann, Adrian
    Hoberg, Claudius
    Havenith, Martina
    [J]. 2022 47TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER AND TERAHERTZ WAVES (IRMMW-THZ 2022), 2022,
  • [8] 3D printed nozzles on a silicon fluidic chip
    Bohne, Sven
    Heymann, Michael
    Chapman, Henry N.
    Trieu, Hoc Khiem
    Bajt, Sasa
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2019, 90 (03):
  • [9] Ricci Flow for 3D Shape Analysis
    Zeng, Wei
    Samaras, Dimitris
    Gu, Xianfeng David
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2010, 32 (04) : 662 - 677
  • [10] Ricci flow for 3D shape analysis
    Gu, Xianfeng
    Wang, Sen
    Kim, Junho
    Zeng, Yun
    Wang, Yang
    Qin, Hong
    Samaras, Dimitris
    [J]. 2007 IEEE 11TH INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS 1-6, 2007, : 1554 - 1561