ASYMPTOTICALLY EXACT A POSTERIORI ERROR ESTIMATES OF EIGENVALUES BY THE CROUZEIX-RAVIART ELEMENT AND ENRICHED CROUZEIX-RAVIART ELEMENT

被引:2
|
作者
Hu, Jun [1 ,2 ]
Ma, Limin [1 ,2 ]
机构
[1] Peking Univ, LMAM, Beijing 100871, Peoples R China
[2] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2020年 / 42卷 / 02期
关键词
eigenvalue problems; nonconforming elements; asymptotically exact a posteriori error estimates; SUPERCONVERGENT PATCH RECOVERY; FINITE-ELEMENT; APPROXIMATIONS;
D O I
10.1137/19M1261997
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Two asymptotically exact a posteriori error estimates are proposed for eigenvalues by the nonconforming Crouzeix-Raviart and enriched Crouzeix-Raviart elements. The main challenge in the design of such error estimators comes from the nonconformity of the finite element spaces used. Such nonconformity causes two difficulties: the first is the construction of high accuracy gradient recovery algorithms, and the second is a computable high accuracy approximation of a consistency error term. The first difficulty was solved for both nonconforming elements in a previous paper. Two methods are proposed to solve the second difficulty in the present paper. In particular, this solution allows the use of high accuracy gradient recovery techniques. Further, a postprocessing algorithm is designed by utilizing asymptotically exact a posteriori error estimators to construct the weights of a combination of two approximate eigenvalues. This algorithm requires solving only one eigenvalue problem and admits high accuracy eigenvalue approximations both theoretically and numerically.
引用
收藏
页码:A797 / A821
页数:25
相关论文
共 50 条
  • [1] ASYMPTOTIC EXPANSIONS OF EIGENVALUES BY BOTH THE CROUZEIX-RAVIART AND ENRICHED CROUZEIX-RAVIART ELEMENTS
    Hu, Jun
    Ma, Limin
    [J]. MATHEMATICS OF COMPUTATION, 2022, 91 (333) : 75 - 109
  • [2] Gradient Recovery for the Crouzeix-Raviart Element
    Guo, Hailong
    Zhang, Zhimin
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2015, 64 (02) : 456 - 476
  • [3] Forty Years of the Crouzeix-Raviart Element
    Brenner, Susanne C.
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2015, 31 (02) : 367 - 396
  • [4] A posteriori error analysis using the constitutive law for the Crouzeix-Raviart element
    Achchab, B.
    Majdoubi, A.
    Meskine, D.
    Souissi, A.
    [J]. APPLIED MATHEMATICS LETTERS, 2009, 22 (08) : 1309 - 1314
  • [5] EXPLICIT ERROR ESTIMATES FOR COURANT, CROUZEIX-RAVIART AND RAVIART-THOMAS FINITE ELEMENT METHODS
    Carstensen, Carsten
    Gedicke, Joscha
    Rim, Donsub
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 2012, 30 (04) : 337 - 353
  • [6] ADAPTIVE CROUZEIX-RAVIART BOUNDARY ELEMENT METHOD
    Heuer, Norbert
    Karkulik, Michael
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2015, 49 (04): : 1193 - 1217
  • [7] Superconvergence of the Crouzeix-Raviart element for elliptic equation
    Zhang, Yidan
    Huang, Yunqing
    Yi, Nianyu
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2019, 45 (5-6) : 2833 - 2844
  • [8] Superconvergence of the Crouzeix-Raviart element for elliptic equation
    Yidan Zhang
    Yunqing Huang
    Nianyu Yi
    [J]. Advances in Computational Mathematics, 2019, 45 : 2833 - 2844
  • [9] The a priori and a posteriori error estimates of Crouzeix-Raviart element for the fluid-solid vibration problem
    Li, Yanjun
    Han, Jiayu
    Yang, Yidu
    Bi, Hai
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2022, 99 (10) : 1968 - 1988
  • [10] Error analysis of Crouzeix-Raviart and Raviart-Thomas finite element methods
    Kobayashi, Kenta
    Tsuchiya, Takuya
    [J]. JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2018, 35 (03) : 1191 - 1211