Quasicrystals are sets of stable sampling

被引:19
|
作者
Matei, Basarab [1 ]
Meyer, Yves [2 ]
机构
[1] Univ Paris 13, LAGA, F-93430 Villetaneuse, France
[2] ENS, CMLA, F-94235 Cachan, France
关键词
D O I
10.1016/j.crma.2008.10.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Irregular sampling and "stable sampling" of band-limited functions have been Studied by H.J. Landau [H.J. Landau, Necessary density conditions for sampling and interpolation of certain entire functions, Acta Math. 117 (1967) 37-52]. We prove that quasicrystals are sets of stable sampling. K) cite this article: B. Matei, Y Meyer, C R. Acad. Sci. Paris, Ser. 1346 (2008). (C) 2008 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:1235 / 1238
页数:4
相关论文
共 50 条
  • [1] Simple quasicrystals are sets of stable sampling
    Matei, Basarab
    Meyer, Yves
    [J]. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2010, 55 (8-10) : 947 - 964
  • [2] Universal sampling, quasicrystals and bounded remainder sets
    Grepstad, Sigrid
    Lev, Nir
    [J]. COMPTES RENDUS MATHEMATIQUE, 2014, 352 (7-8) : 633 - 638
  • [3] EXISTENCE OF QUASICRYSTALS AND UNIVERSAL STABLE SAMPLING AND INTERPOLATION IN LCA GROUPS
    Agora, Elona
    Antezana, Jorge
    Cabrelli, Carlos
    Matei, Basarab
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (07) : 4647 - 4674
  • [4] Recombination of Stable Sampling Sets and Stable Interpolation Sets in Functional Quasinormed Spaces
    Nicolas, Jose Alfonso Lopez
    [J]. BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2024, 42 : 1 - 14
  • [5] Image Sampling with Quasicrystals
    Grundland, Mark
    Patera, Jiri
    Masakova, Zuzana
    Dodgson, Neil A.
    [J]. SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2009, 5
  • [6] Quasicrystals and model sets on substitution point sets
    Lee, JY
    [J]. PHILOSOPHICAL MAGAZINE, 2006, 86 (6-8) : 915 - 920
  • [7] Repetitive Delone sets and quasicrystals
    Lagarias, JC
    Pleasants, PAB
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2003, 23 : 831 - 867
  • [8] Soft quasicrystals - Why are they stable?
    Lifshitz, R.
    Diamant, H.
    [J]. PHILOSOPHICAL MAGAZINE, 2007, 87 (18-21) : 3021 - 3030
  • [9] Electrical resistivities of stable quasicrystals
    Kimura, K.
    Kishi, K.
    Hashimoto, T.
    Takeuchi, S.
    Shibuya, T.
    [J]. Materials Science and Engineering A, 1991, A133 (pt 1) : 94 - 97
  • [10] Quasicrystals, model sets, and automatic sequences
    Allouche, Jean-Paul
    Meyer, Yves
    [J]. COMPTES RENDUS PHYSIQUE, 2014, 15 (01) : 6 - 11