Trace forms of abelian extensions of number fields of type (1,0)

被引:0
|
作者
Morris, Karli [1 ]
Perlis, Robert [2 ]
机构
[1] Univ Montevallo, Dept Biol Chem & Math, Montevallo, AL 35115 USA
[2] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
来源
LINEAR & MULTILINEAR ALGEBRA | 2013年 / 61卷 / 02期
关键词
trace forms; Witt ring; Witt equivalence; symmetric bilinear forms;
D O I
10.1080/03081087.2012.671818
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article is concerned with describing certain bilinear forms associated with finite abelian extensions N vertical bar K of an algebraic number field K. These abelian trace forms are described up to Witt equivalence, that is, they are described as elements in the Witt ring W(K). When the base field K has exactly one dyadic prime and no real embeddings, it is shown that the Witt class of every abelian trace form over K is a product of Witt classes of five specified types.
引用
收藏
页码:233 / 253
页数:21
相关论文
共 50 条