Deep Log-Normal Label Distribution Learning for Pneumoconiosis Staging on Chest Radiographs

被引:0
|
作者
Sun, Wenjian [1 ]
Wu, Dongsheng [2 ,3 ]
Luo, Yang [1 ]
Liu, Lu [2 ]
Zhang, Hongjing [2 ]
Wu, Shuang [2 ]
Zhang, Yan [2 ]
Wang, Chenglong [2 ]
Zheng, Houjun [2 ]
Shen, Jiang [2 ,3 ]
Luo, Chunbo [1 ]
机构
[1] Univ Elect Sci & Technol China, Chengdu, Peoples R China
[2] West China Fourth Hosp, Chengdu, Peoples R China
[3] West China PUMC CC Chen Inst Hlth, Beijing, Peoples R China
关键词
Log-Normal Label Distribution Learning; Model Overfitting; Pneumoconiosis Staging; Stage Ambiguity;
D O I
10.1109/CBMS55023.2022.00073
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Pneumoconiosis staging has been a challenging task for deep neural networks due to the stage ambiguity in early pneumoconiosis. In this article, we propose a deep log-normal label distribution learning method named DLN-LDL for pneumoconiosis staging by exploring the intrinsic stage distribution patterns of pneumoconiosis. DLN-LDL effectively prevents the deep network from overfitting features in ambiguous chest radiographs that are irrelevant to the stage to which they belong by replacing the one-hot labels with log-normally distributed vectors. The experiments on our collected pneumoconiosis dataset confirm that the proposed DLN-LDL algorithm outperforms other classical methods in terms of Accuracy, Precision,
引用
收藏
页码:372 / 376
页数:5
相关论文
共 50 条
  • [1] A Fully Deep Learning Paradigm for Pneumoconiosis Staging on Chest Radiographs
    Sun, Wenjian
    Wu, Dongsheng
    Luo, Yang
    Liu, Lu
    Zhang, Hongjing
    Wu, Shuang
    Zhang, Yan
    Wang, Chenglong
    Zheng, Houjun
    Shen, Jiang
    Luo, Chunbo
    [J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2022, 26 (10) : 5154 - 5164
  • [2] Log-Normal and Log-Normal Distribution with Cure Fraction for Survival Data
    Santos, Damiao F.
    Almeida, Pablo L. R.
    Oliveira, Tiago A.
    [J]. SIGMAE, 2019, 8 (02): : 323 - 330
  • [3] LOG-NORMAL DISTRIBUTION FUNCTION
    SIANO, DB
    [J]. JOURNAL OF CHEMICAL EDUCATION, 1972, 49 (11) : 755 - &
  • [4] The beta log-normal distribution
    Castellares, F.
    Montenegro, L. C.
    Cordeiro, G. M.
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2013, 83 (02) : 203 - 228
  • [5] PERMANENCE OF LOG-NORMAL DISTRIBUTION
    MITCHELL, RL
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1968, 58 (09) : 1267 - &
  • [6] ExpertNet: Defeat noisy labels by deep expert consultation paradigm for pneumoconiosis staging on chest radiographs
    Sun, Wenjian
    Wu, Dongsheng
    Luo, Yang
    Liu, Lu
    Zhang, Hongjing
    Wu, Shuang
    Zhang, Yan
    Wang, Chenglong
    Zheng, Houjun
    Shen, Jiang
    Luo, Chunbo
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2023, 232
  • [8] CRITICAL VALUES OF THE LOG-NORMAL DISTRIBUTION
    MOSHMAN, J
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1953, 48 (263) : 600 - 609
  • [9] ON THE SHIFTED HYBRID LOG-NORMAL DISTRIBUTION
    Shibu, Damodaran Santhamani
    Nitin, Soman Latha
    Irshad, Muhammed Rasheed
    [J]. STATISTICA, 2022, 82 (04): : 417 - 431
  • [10] On the log-normal distribution of network traffic
    Antoniou, I
    Ivanov, VV
    Ivanov, VV
    Zrelov, PV
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2002, 167 (1-2) : 72 - 85