Nonparametric Estimation of Heavy-Tailed Density by the Discrepancy Method

被引:0
|
作者
Markovich, Natalia [1 ]
机构
[1] Russian Acad Sci, VA Trapeznikov Inst Control Sci, Moscow 117997, Russia
来源
NONPARAMETRIC STATISTICS | 2016年 / 175卷
基金
俄罗斯基础研究基金会;
关键词
Heavy-tailed density; Kernel estimator; Bandwidth; Discrepancy method; BANDWIDTH SELECTION;
D O I
10.1007/978-3-319-41582-6_8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The nonparametric estimation of the probability density function (pdf) requires smoothing parameters like bandwidths of kernel estimates. We consider the so-called discrepancy method proposed in [13, 14, 21] as a data-driven smoothing tool and alternative to cross-validation. It is based on the von Mises-Smirnov's (M-S) and the Kolmogorov-Smirnov's (K-S) nonparametric statistics as measures in the space of distribution functions (cdfs). The unknown smoothing parameter is found as a solution of the discrepancy equation. On its left-hand side stands the measure between the empirical distribution function and the nonparametric estimate of the cdf. The latter is obtained as a corresponding integral of the pdf estimator. The right-hand side is equal to a quantile of the asymptotic distribution of the M-S or K-S statistic. The discrepancy method considered earlier for light-tailed pdfs is investigated now for heavy-tailed pdfs.
引用
收藏
页码:103 / 116
页数:14
相关论文
共 50 条
  • [1] Heavy-Tailed Density Estimation
    Tokdar, Surya T.
    Jiang, Sheng
    Cunningham, Erika L.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2024, 119 (545) : 163 - 175
  • [2] CONSISTENT NONPARAMETRIC ESTIMATION FOR HEAVY-TAILED SPARSE GRAPHS
    Borgs, Christian
    Chayes, Jennifer T.
    Cohn, Henry
    Ganguly, Shirshendu
    [J]. ANNALS OF STATISTICS, 2021, 49 (04): : 1904 - 1930
  • [3] Nonparametric elicitation for heavy-tailed prior distributions
    Gosling, John Paul
    Oakley, Jeremy E.
    O'Hagan, Anthony
    [J]. BAYESIAN ANALYSIS, 2007, 2 (04): : 693 - 718
  • [4] Robust Nonparametric Regression for Heavy-Tailed Data
    Gorji, Ferdos
    Aminghafari, Mina
    [J]. JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2020, 25 (03) : 277 - 291
  • [5] Robust Nonparametric Regression for Heavy-Tailed Data
    Ferdos Gorji
    Mina Aminghafari
    [J]. Journal of Agricultural, Biological and Environmental Statistics, 2020, 25 : 277 - 291
  • [6] The estimation of heavy-tailed probability density functions, their mixtures and quantiles
    Markovitch, NM
    Krieger, UR
    [J]. COMPUTER NETWORKS, 2002, 40 (03) : 459 - 474
  • [7] Heavy-tailed Streaming Statistical Estimation
    Tsai, Che-Ping
    Prasad, Adarsh
    Balakrishnan, Sivaraman
    Ravikumar, Pradeep
    [J]. INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151
  • [8] Estimation of heavy-tailed density functions with application to WWW-traffic
    Markovich, Natalia M.
    [J]. 2006 2ND CONFERENCE ON NEXT GENERATION INTERNET DESIGN AND ENGINEERING, 2006, : 208 - 215
  • [9] Estimation of heavy-tailed probability density function with application to Web data
    Rostislav E. Maiboroda
    Natalia M. Markovich
    [J]. Computational Statistics, 2004, 19 : 569 - 592
  • [10] Non-parametric heavy-tailed density estimation and classification problem
    Markovitch, NM
    Krieger, UR
    [J]. ADAPTATION AND LEARNING IN CONTROL AND SIGNAL PROCESSING 2001, 2002, : 187 - 192