On a strongly anisotropic equation with L1 data

被引:11
|
作者
Chrif, M. [2 ]
El Manouni, S. [1 ]
机构
[1] Al Imam Univ, Dept Math, Fac Sci, Riyadh, Saudi Arabia
[2] Fes Univ, Dept Math, Fac Sci, Atlas Fes, Fes, Morocco
关键词
strongly non-linear problem; anisotropic spaces; finite order; L-1; data; monotonicity condition; sign condition;
D O I
10.1080/00036810802307546
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we shall be concerned with the existence of solutions for the strongly non-linear boundary value problem: Au + g(x, u) = f, where A is an elliptic operator of finite order defined from an anisotropic Sobolev space of order m to its dual, g is a Caratheodory function satisfying essentially a sign condition on u with no growth restrictions and f belongs to L-1.
引用
收藏
页码:865 / 871
页数:7
相关论文
共 50 条
  • [1] Strongly anisotropic elliptic problems with regular and L1 data
    Chrif, Moussa
    El Manouni, Said
    Mokhtari, Fares
    [J]. PORTUGALIAE MATHEMATICA, 2015, 72 (04) : 357 - 391
  • [2] L1 - L1 estimates for the strongly damped plate equation
    D'Abbicco, M.
    Girardi, G.
    Liang, Jinju
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 478 (02) : 476 - 498
  • [3] A strongly nonlinear elliptic equation having natural growth terms and L1 data
    Benkirane, A
    Elmahi, A
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 39 (04) : 403 - 411
  • [4] On the study of strongly parabolic problems involving anisotropic operators in L1
    Chrif, M.
    Manouni, S. El
    Hjiaj, H.
    [J]. MONATSHEFTE FUR MATHEMATIK, 2021, 195 (04): : 611 - 647
  • [5] Strongly nonlinear problem of infinite order with L1 data
    Benkirane, A.
    Chrif, M.
    El Manouni, S.
    [J]. ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2009, (15) : 1 - 12
  • [6] On the solutions to 1-Laplacian equation with L1 data
    Mercaldo, A.
    de Leon, S. Segura
    Trombetti, C.
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 256 (08) : 2387 - 2416
  • [7] Uniqueness and Estimates for a Parabolic Equation with L1 Data
    Porzio, Maria Michaela
    [J]. JOURNAL OF CONVEX ANALYSIS, 2021, 28 (02) : 689 - 710
  • [8] SMALL DATA EXISTENCE FOR THE ENSKOG EQUATION IN L1
    CERCIGNANI, C
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1988, 51 (1-2) : 291 - 297
  • [9] An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data
    Jin, Bangti
    Lazarov, Raytcho
    Zhou, Zhi
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2016, 36 (01) : 197 - 221
  • [10] Existence and asymptotic behavior of a parabolic equation with L1 data
    Moreno-Merida, Lourdes
    Porzio, Maria Michaela
    [J]. ASYMPTOTIC ANALYSIS, 2020, 118 (03) : 143 - 159