Video Anomaly Search in Crowded Scenes via Spatio-Temporal Motion Context

被引:87
|
作者
Cong, Yang [1 ]
Yuan, Junsong [2 ]
Tang, Yandong [3 ]
机构
[1] Chinese Acad Sci, Shenyang Inst Automat, State Key Lab Robot, Shenyang 110016, Peoples R China
[2] Nanyang Technol Univ, Dept Elect & Elect Engn, Singapore 639798, Singapore
[3] Chinese Acad Sci, State Key Lab Robot, Shenyang 110016, Peoples R China
关键词
Abnormal event detection; compact projection; event recognition; motion; video analysis; video surveillance; DETECTING IRREGULARITIES; IMAGES;
D O I
10.1109/TIFS.2013.2272243
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Video anomaly detection plays a critical role for intelligent video surveillance. We present an abnormal video event detection system that considers both spatial and temporal contexts. To characterize the video, we first perform the spatio-temporal video segmentation and then propose a new region-based descriptor called "Motion Context," to describe both motion and appearance information of the spatio-temporal segment. For anomaly measurements, we formulate the abnormal event detection as a matching problem, which is more robust than statistic model-based methods, especially when the training dataset is of limited size. For each testing spatio-temporal segment, we search for its best match in the training dataset, and determine how normal it is using a dynamic threshold. To speed up the search process, compact random projections are also adopted. Experiments on the benchmark dataset and comparisons with the state-of-the-art methods validate the advantages of our algorithm.
引用
收藏
页码:1590 / 1599
页数:10
相关论文
共 50 条
  • [1] Anomaly Detection through Spatio-Temporal Context Modeling in Crowded Scenes
    Lu, Tong
    Wu, Liang
    Ma, Xiaolin
    Shivakumara, Palaiahnakote
    Tan, Chew Lim
    [J]. 2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, : 2203 - 2208
  • [2] Anomaly Detection in Extremely Crowded Scenes Using Spatio-Temporal Motion Pattern Models
    Kratz, Louis
    Nishino, Ko
    [J]. CVPR: 2009 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-4, 2009, : 1446 - 1453
  • [3] Tracking with Local Spatio-Temporal Motion Patterns in Extremely Crowded Scenes
    Kratz, Louis
    Nishino, Ko
    [J]. 2010 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2010, : 693 - 700
  • [4] ABNORMAL MOTION DETECTION IN CROWDED SCENES USING LOCAL SPATIO-TEMPORAL ANALYSIS
    Daniyal, Fahad
    Cavallaro, Andrea
    [J]. 2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 1944 - 1947
  • [5] Tracking Pedestrians Using Local Spatio-Temporal Motion Patterns in Extremely Crowded Scenes
    Kratz, Louis
    Nishino, Ko
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (05) : 987 - 1002
  • [6] Global abnormal events detection in crowded scenes using context location and motion-rich spatio-temporal volumes
    Patil, N.
    Biswas, Prabir Kumar
    [J]. IET IMAGE PROCESSING, 2018, 12 (04) : 596 - 604
  • [7] Video Waterdrop Removal via Spatio-Temporal Fusion in Driving Scenes
    Wen, Qiang
    Wu, Yue
    Chen, Qifeng
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2023), 2023, : 10003 - 10009
  • [8] Video anomaly detection with spatio-temporal dissociation
    Chang, Yunpeng
    Tu, Zhigang
    Xie, Wei
    Luo, Bin
    Zhang, Shifu
    Sui, Haigang
    Yuan, Junsong
    [J]. PATTERN RECOGNITION, 2022, 122
  • [9] Spatio-Temporal AutoEncoder for Video Anomaly Detection
    Zhao, Yiru
    Deng, Bing
    Shen, Chen
    Liu, Yao
    Lu, Hongtao
    Hua, Xian-Sheng
    [J]. PROCEEDINGS OF THE 2017 ACM MULTIMEDIA CONFERENCE (MM'17), 2017, : 1933 - 1941
  • [10] HIERARCHICAL ACTIVITY DISCOVERY WITHIN SPATIO-TEMPORAL CONTEXT FOR VIDEO ANOMALY DETECTION
    Xu, Dan
    Wu, Xinyu
    Song, Dezhen
    Li, Nannan
    Chen, Yen-Lun
    [J]. 2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 3597 - 3601