QUADRATURE BASED FINITE ELEMENT METHODS FOR LINEAR PARABOLIC INTERFACE PROBLEMS

被引:3
|
作者
Deka, Bhupen [1 ]
Deka, Ram Charan [2 ]
机构
[1] Indian Inst Technol Guwahati, Dept Math, North Ghwahati 781039, India
[2] Tezpur Univ, Dept Math Sci, Napaam 784028, Tezpur, India
关键词
parabolic equation; interface; finite element method; optimal error estimates; quadrature; ELLIPTIC-EQUATIONS;
D O I
10.4134/BKMS.2014.51.3.717
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the effect of numerical quadrature in space on semidiscrete and fully discrete piecewise linear finite element methods for parabolic interface problems. Optimal L-2(L-2) and L-2(H-1) error estimates are shown to hold for semidiscrete problem under suitable regularity of the true solution in whole domain. Further, fully discrete scheme based on backward Euler method has also analyzed and optimal L-2(L-2) norm error estimate is established. The error estimates are obtained for fitted finite element discretization based on straight interface triangles.
引用
收藏
页码:717 / 737
页数:21
相关论文
共 50 条