We study the effect of numerical quadrature in space on semidiscrete and fully discrete piecewise linear finite element methods for parabolic interface problems. Optimal L-2(L-2) and L-2(H-1) error estimates are shown to hold for semidiscrete problem under suitable regularity of the true solution in whole domain. Further, fully discrete scheme based on backward Euler method has also analyzed and optimal L-2(L-2) norm error estimate is established. The error estimates are obtained for fitted finite element discretization based on straight interface triangles.
机构:
Harbin Inst Technol, Sch Sci, Shenzhen 518000, Peoples R ChinaHarbin Inst Technol, Sch Sci, Shenzhen 518000, Peoples R China
Gong, Wenbo
Zhang, Qinghui
论文数: 0引用数: 0
h-index: 0
机构:
Harbin Inst Technol, Sch Sci, Shenzhen 518000, Peoples R China
Sun Yat Sen Univ, Guangdong Prov Key Lab Computat Sci, Guangzhou, Peoples R ChinaHarbin Inst Technol, Sch Sci, Shenzhen 518000, Peoples R China
机构:
South China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R ChinaSouth China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R China
Chen, Yanping
Yi, Huaming
论文数: 0引用数: 0
h-index: 0
机构:
Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R ChinaSouth China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R China
Yi, Huaming
Wang, Yang
论文数: 0引用数: 0
h-index: 0
机构:
Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R ChinaSouth China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R China
Wang, Yang
Huang, Yunqing
论文数: 0引用数: 0
h-index: 0
机构:
Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R ChinaSouth China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R China