Night-time cloud detection for FY-3A/VIRR using multispectral thresholds

被引:9
|
作者
He, Quanjun [1 ,2 ,3 ]
机构
[1] Guangzhou Meteorol Satellite Ground Stn, Guangzhou 510640, Guangdong, Peoples R China
[2] Chinese Acad Sci, South China Sea Inst Oceanol, State Key Lab Trop Oceanog, Guangzhou 510301, Guangdong, Peoples R China
[3] Chinese Acad Sci, Grad Univ, Beijing 100049, Peoples R China
关键词
HIGH-RESOLUTION-RADIOMETER; MU-M WINDOW; CIRRUS CLOUDS; AVHRR DATA; CLEAR-SKY; DYNAMIC THRESHOLDS; ALGORITHM; CLASSIFICATION; IMAGES; MODIS;
D O I
10.1080/01431161.2012.755275
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Night-time cloud detection using satellite data is a challenging area of research. This article presents a night-time cloud detection algorithm based on multispectral thresholds for the Visible and Infrared Radiometer (VIRR). VIRR is one of the keystone instruments on board the Chinese Feng Yun 3 (FY-3) polar-orbiting meteorological satellite. In this algorithm, three thermal infrared channels and other ancillary data are used to test for the presence of clouds according to different underlying surface types, and the four levels of possible cloud confidence are used to report whether a pixel is cloudy or clear. This algorithm strengthens the ability of identification of low cloud using the brightness temperature difference between the 3.7 and 12 m channels. The comparisons of a new cloud mask with the official VIRR cloud mask product and with the official Moderate Resolution Imaging Spectroradiometer (MODIS) cloud mask product are shown to illustrate and validate the effect of this new algorithm. In addition, this algorithm is applied to FY-3B/VIRR data to test the validity and accuracy of cloud detection.
引用
收藏
页码:2876 / 2887
页数:12
相关论文
共 50 条
  • [1] A daytime cloud detection algorithm for FY-3A/VIRR data
    He, Quan-Jun
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2011, 32 (21) : 6811 - 6822
  • [2] A Quality Control Procedure for FY-3A MWTS Measurements with Emphasis on Cloud Detection Using VIRR Cloud Fraction
    Li, Juan
    Zou, Xiaolei
    JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2013, 30 (08) : 1704 - 1715
  • [3] Improved cloud mask algorithm for FY-3A/VIRR data over the northwest region of China
    Wang, X.
    Li, W.
    Zhu, Y.
    Zhao, B.
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2013, 6 (03) : 549 - 563
  • [4] Comparative Analysis of the Difference of the Vegetation Indexes between FY-3A/VIRR, FY-3A/MERSI and Terra/MODIS data
    Ge, M. X.
    Zhao, J.
    Zhong, B.
    Yang, A. X.
    Proceedings of the 2016 4th International Conference on Mechanical Materials and Manufacturing Engineering (MMME 2016), 2016, 79 : 257 - 260
  • [5] RETRIEVAL OF SEA SURFACE TEMPERATUE FROM FY-3A VIRR DATA
    Wang, Hongyan
    Guan, Lei
    Wu, Fan
    2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 2009 - 2012
  • [7] Automatic Extraction of Information on Hill Fires Based on FY-3A/VIRR Data
    Wang Jian
    Luo Yongqin
    Qiao Minrui
    2013 INTERNATIONAL CONFERENCE ON ADVANCED MECHATRONIC SYSTEMS (ICAMECHS), 2013, : 660 - 665
  • [8] Consistent Calibration of VIRR Reflective Solar Channels Onboard FY-3A, FY-3B, and FY-3C Using a Multisite Calibration Method
    Wang, Ling
    Hu, Xiuqing
    Chen, Lin
    He, Lingli
    REMOTE SENSING, 2018, 10 (09)
  • [9] 基于非线性算法的FY-3A/VIRR SST反演
    何全军
    曹静
    陈翔
    张月维
    气象, 2013, 39 (01) : 74 - 79
  • [10] Improved cloud phase retrieval approaches for China's FY-3A/VIRR multi-channel data using Artificial Neural Networks
    Yang, Chunping
    Guo, Jing
    OPTIK, 2016, 127 (04): : 1797 - 1803