Generalized Lyapunov Exponents of Homogeneous Systems

被引:0
|
作者
Polyakov, Andrey [1 ]
Zhuk, Sergiy [2 ]
机构
[1] Univ Lille, Inria Lille, CNRS, UMR 9189,CRIStAL, F-59000 Lille, France
[2] IBM Res, Dublin, Ireland
关键词
DESIGN;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The paper deals the method of Lyapunov exponents for a class of a generalized homogeneous systems. Homogeneous systems may have some sup-exponential and super-exponential grows. In this case, the method of Lyapunov exponents becomes non-informative, e.g. all Lyapunov exponents may equal to zero but the system is globally uniformly asymptotically stable. In this paper we propose an approach which allows us to analyze a behavior of such homogeneous systems by means of the method of Lyapunov exponents.
引用
收藏
页码:7087 / 7092
页数:6
相关论文
共 50 条
  • [1] Simulation of Moment Lyapunov Exponents for Linear Homogeneous Stochastic Systems
    Xie, Wei-Chau
    Huang, Qinghua
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2009, 76 (03): : 1 - 10
  • [2] Lyapunov Exponents for Generalized Szegő Cocycles
    Fang, Licheng
    Wang, Fengpeng
    RESULTS IN MATHEMATICS, 2024, 79 (04)
  • [3] Quantum Bounds on the Generalized Lyapunov Exponents
    Pappalardi, Silvia
    Kurchan, Jorge
    ENTROPY, 2023, 25 (02)
  • [4] Fluctuations of Lyapunov exponents in homogeneous and isotropic turbulence
    Ho, Richard D. J. G.
    Armua, Andres
    Berera, Arjun
    PHYSICAL REVIEW FLUIDS, 2020, 5 (02)
  • [5] Generalized spectral radius and Lyapunov exponents of linear time varying systems
    Czornik, Adam
    Nawrat, Aleksander
    PROCEEDINGS OF THE 2007 IEEE CONFERENCE ON CONTROL APPLICATIONS, VOLS 1-3, 2007, : 210 - 213
  • [6] The Upper Semicontinuity of Senior Generalized Lyapunov Exponents of Systems of Differential Equations
    Aldibekov, T. M.
    RUSSIAN MATHEMATICS, 2010, 54 (05) : 1 - 5
  • [7] Scaling of Lyapunov exponents in homogeneous isotropic turbulence
    Mohan, Prakash
    Fitzsimmons, Nicholas
    Moser, Robert D.
    PHYSICAL REVIEW FLUIDS, 2017, 2 (11):
  • [8] Lyapunov exponents in unstable systems
    Colonna, M
    Bonasera, A
    PHYSICAL REVIEW E, 1999, 60 (01): : 444 - 448
  • [9] Asymptotic stability of structural systems based on lyapunov exponents and moment Lyapunov exponents
    Doyle, MM
    Namachchivaya, NS
    VanRoessel, HJ
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1997, 32 (04) : 681 - 692
  • [10] CORRELATION-FUNCTIONS AND GENERALIZED LYAPUNOV EXPONENTS
    BADII, R
    HEINZELMANN, K
    MEIER, PF
    POLITI, A
    PHYSICAL REVIEW A, 1988, 37 (04): : 1323 - 1328