Variational Memory Encoder-Decoder

被引:0
|
作者
Hung Le [1 ]
Truyen Tran [1 ]
Thin Nguyen [1 ]
Venkatesh, Svetha [1 ]
机构
[1] Deakin Univ, Appl AI Inst, Geelong, Vic, Australia
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Introducing variability while maintaining coherence is a core task in learning to generate utterances in conversation. Standard neural encoder-decoder models and their extensions using conditional variational autoencoder often result in either trivial or digressive responses. To overcome this, we explore a novel approach that injects variability into neural encoder-decoder via the use of external memory as a mixture model, namely Variational Memory Encoder-Decoder (VMED). By associating each memory read with a mode in the latent mixture distribution at each timestep, our model can capture the variability observed in sequential data such as natural conversations. We empirically compare the proposed model against other recent approaches on various conversational datasets. The results show that VMED consistently achieves significant improvement over others in both metric-based and qualitative evaluations.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] On the Encoder-Decoder Incompatibility in Variational Text Modeling and Beyond
    Wu, Chen
    Wang, Prince Zizhuang
    Wang, William Yang
    [J]. 58TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2020), 2020, : 3449 - 3464
  • [2] Comparison Between Variational Autoencoder and Encoder-Decoder Models for Short Conversation
    Asakawa, Shin
    Ogata, Takashi
    [J]. ICAROB 2017: PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON ARTIFICIAL LIFE AND ROBOTICS, 2017, : P639 - P642
  • [3] Appraisal of Resistivity Inversion Models With Convolutional Variational Encoder-Decoder Network
    Wilson, Bibin
    Singh, Anand
    Sethi, Amit
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [4] Hetero-Modal Variational Encoder-Decoder for Joint Modality Completion and Segmentation
    Dorent, Reuben
    Joutard, Samuel
    Modat, Marc
    Ourselin, Sebastien
    Vercauteren, Tom
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT II, 2019, 11765 : 74 - 82
  • [5] Monocular Semantic Occupancy Grid Mapping With Convolutional Variational Encoder-Decoder Networks
    Lu, Chenyang
    van de Molengraft, Marinus Jacobus Gerardus
    Dubbelman, Gijs
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2019, 4 (02) : 445 - 452
  • [6] ECGVEDNET: A Variational Encoder-Decoder Network for ECG Delineation in Morphology Variant ECGs
    Chen, Long
    Jiang, Zheheng
    Barker, Joseph
    Zhou, Huiyu
    Schlindwein, Fernando
    Nicolson, Will
    Ng, G. Andre
    Li, Xin
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2024, 71 (07) : 2143 - 2153
  • [7] A Multimodal Variational Encoder-Decoder Framework for Micro-video Popularity Prediction
    Xie, Jiayi
    Zhu, Yaochen
    Zhang, Zhibin
    Peng, Jian
    Yi, Jing
    Hu, Yaosi
    Liu, Hongyi
    Chen, Zhenzhong
    [J]. WEB CONFERENCE 2020: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2020), 2020, : 2542 - 2548
  • [8] Efficient Decoder Reduction for a Variety of Encoder-Decoder Problems
    van der Putten, Joost
    van der Sommen, Fons
    De With, Peter H. N.
    [J]. IEEE ACCESS, 2020, 8 : 169444 - 169455
  • [9] Interpretable Transformations with Encoder-Decoder Networks
    Worrall, Daniel E.
    Garbin, Stephan J.
    Turmukhambetov, Daniyar
    Brostow, Gabriel J.
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 5737 - 5746
  • [10] Understanding Geometry of Encoder-Decoder CNNs
    Ye, Jong Chul
    Sung, Woon Kyoung
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97