INCREMENTAL ROBUST LOCAL DICTIONARY LEARNING FOR VISUAL TRACKING

被引:0
|
作者
Bai, Shanshan [1 ]
Liu, Risheng [2 ,3 ,4 ]
Su, Zhixun [1 ]
Zhang, Changcheng [1 ]
Jin, Wei [1 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian, Peoples R China
[2] Dalian Univ Technol, Sch Software Technol, Dalian, Peoples R China
[3] Dalian Univ Technol, Fac Elect Informat & Elect Engn, Dalian, Peoples R China
[4] Nanjing Univ, State Key Lab Novel Software Technol, Nanjing, Jiangsu, Peoples R China
关键词
Incremental low-rank feature; visual tracking; robust local dictionary; sparse representation; particle filter; EXTRACTION; FEATURES;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Visual tracking is a fundamental task in computer vision. In this paper, we propose an incremental robust local dictionary learning framework to address this problem. We first initialize a dictionary using local low-rank features to represent the appearance subspace for the object. In this way, each candidate can be modeled by the sparse linear representation of the learnt dictionary. Then by incrementally updating the local dictionary and learning sparse representation for the candidate, we build a robust online object tracking system. Compared with conventional methods, which directly use corrupted observations to form the dictionary, our local low-rank features based dictionary successfully remove occlusions and exactly represent the intrinsic structure of the object. Furthermore, in contrast to the traditional holistic dictionary, the local low-rank features based dictionary contain abundant partial information and spatial information. Experimental results on challenging image sequences show that our method consistently outperforms several state-of-the-art methods.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Incremental Learning for Robust Visual Tracking
    David A. Ross
    Jongwoo Lim
    Ruei-Sung Lin
    Ming-Hsuan Yang
    [J]. International Journal of Computer Vision, 2008, 77 : 125 - 141
  • [2] Incremental learning for robust visual tracking
    Ross, David A.
    Lim, Jongwoo
    Lin, Ruei-Sung
    Yang, Ming-Hsuan
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2008, 77 (1-3) : 125 - 141
  • [3] Robust Visual Tracking with Discrimination Dictionary Learning
    Wang, Yuanyun
    Deng, Chengzhi
    Wang, Jun
    Tian, Wei
    Wang, Shengqian
    [J]. ADVANCES IN MULTIMEDIA, 2018, 2018
  • [4] Robust Visual Tracking via Incremental Subspace Learning and Local Sparse Representation
    Yang, Guoliang
    Hu, Zhengwei
    Tang, Jun
    [J]. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2018, 43 (02) : 627 - 636
  • [5] Robust Visual Tracking via Incremental Subspace Learning and Local Sparse Representation
    Guoliang Yang
    Zhengwei Hu
    Jun Tang
    [J]. Arabian Journal for Science and Engineering, 2018, 43 : 627 - 636
  • [6] Robust Visual Tracking With Multitask Joint Dictionary Learning
    Fan, Heng
    Xiang, Jinhai
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2017, 27 (05) : 1018 - 1030
  • [7] Robust visual tracking based on incremental tensor subspace learning
    Li, Xi
    Hu, Weiming
    Zhang, Zhongfei
    Zhang, Xiaoqin
    Luo, Guan
    [J]. 2007 IEEE 11TH INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS 1-6, 2007, : 960 - +
  • [8] Robust Visual Tracking with Incremental Subspace Learning Sparse Model
    Wang, Hongqing
    Xu, Tingfa
    [J]. COMMUNICATIONS, SIGNAL PROCESSING, AND SYSTEMS, 2019, 463 : 2721 - 2728
  • [9] Robust Visual Tracking Based on Online Learning of a Joint Sparse Dictionary
    Li, Qiaozhe
    Qiao, Yu
    Yang, Jie
    Bai, Li
    [J]. SIXTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2013), 2013, 9067
  • [10] Online Robust Non-negative Dictionary Learning for Visual Tracking
    Wang, Naiyan
    Wang, Jingdong
    Yeung, Dit-Yan
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2013, : 657 - 664