On differential games for infinite-dimensional systems with nonlinear, unbounded operators

被引:14
|
作者
Kocan, M
Soravia, P
Swiech, A
机构
[1] DIPARTIMENTO MATEMAT PURA & APPLICATA,I-35131 PADUA,ITALY
[2] GEORGIA INST TECHNOL,SCH MATH,ATLANTA,GA 30332
基金
美国国家科学基金会; 澳大利亚研究理事会;
关键词
D O I
10.1006/jmaa.1997.5475
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a two-player, zero-sum differential game governed by an abstract nonlinear differential equation of accretive type in an infinite-dimensional space. We prove that the value function of the game is the unique viscosity solution of the corresponding Hamilton-Jacobi-Isaacs equation in the sense of M. G. Crandall and P. L. Lions (''Evolution Equations, Control Theory and Biomathematics,'' Lecture Notes in Pure and Appl. Math., Vol. 155, Dekker, New York, 1994). We also discuss some properties of this notion of solution. (C) 1997 Academic Press.
引用
收藏
页码:395 / 423
页数:29
相关论文
共 50 条