Abundance of attracting, repelling and elliptic periodic orbits in two-dimensional reversible maps

被引:34
|
作者
Delshams, A. [1 ]
Gonchenko, S. V. [2 ]
Gonchenko, V. S. [2 ]
Lazaro, J. T. [1 ]
Sten'kin, O. [2 ]
机构
[1] Univ Politecn Cataluna, Barcelona, Spain
[2] Inst Appl Math & Cybernet, Nizhnii Novgorod, Russia
关键词
HOMOCLINIC TANGENCIES; NEWHOUSE REGIONS; DIFFEOMORPHISMS; SYSTEMS; DIMENSION; CHAOS;
D O I
10.1088/0951-7715/26/1/1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the dynamics and bifurcations of two-dimensional reversible maps with non-transversal heteroclinic cycles containing symmetric saddle fixed points. We consider one-parameter families of reversible maps unfolding the initial heteroclinic tangency and prove the existence of infinitely many sequences (cascades) of bifurcations and the birth of asymptotically stable, unstable and elliptic periodic orbits.
引用
收藏
页码:1 / 33
页数:33
相关论文
共 50 条
  • [1] On cascades of elliptic periodic points in two-dimensional symplectic maps with homoclinic tangencies
    M. S. Gonchenko
    S. V. Gonchenko
    Regular and Chaotic Dynamics, 2009, 14 : 116 - 136
  • [2] On cascades of elliptic periodic points in two-dimensional symplectic maps with homoclinic tangencies
    Gonchenko, M. S.
    Gonchenko, S. V.
    REGULAR & CHAOTIC DYNAMICS, 2009, 14 (01): : 116 - 136
  • [3] ON THE STABILITY OF PERIODIC-ORBITS OF TWO-DIMENSIONAL MAPPINGS
    BOUNTIS, T
    HELLEMAN, RHG
    JOURNAL OF MATHEMATICAL PHYSICS, 1981, 22 (09) : 1867 - 1877
  • [4] PERIODIC-ORBITS IN A TWO-DIMENSIONAL GALACTIC POTENTIAL
    DAVOUST, E
    CELESTIAL MECHANICS, 1983, 31 (03): : 303 - 315
  • [5] Observation of Periodic Orbits on Curved Two-Dimensional Geometries
    Avlund, M.
    Ellegaard, C.
    Oxborrow, M.
    Guhr, T.
    Sondergaard, N.
    PHYSICAL REVIEW LETTERS, 2010, 104 (16)
  • [6] BASINS OF PERIODIC-ORBITS FOR ELLIPTIC MAPS OF THE TORUS
    AMADASI, L
    CASARTELLI, M
    JOURNAL OF STATISTICAL PHYSICS, 1991, 65 (1-2) : 363 - 372
  • [7] Homoclinic orbits bifurcations of one- and two-dimensional maps
    Belykh, VN
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1996, 6 (06): : 1169 - 1176
  • [8] A criterion for mixed dynamics in two-dimensional reversible maps
    Turaev, Dmitry
    CHAOS, 2021, 31 (04)
  • [9] Perturbing two-dimensional maps having critical homoclinic orbits
    Battelli, F
    Lazzari, C
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (06): : 1189 - 1195
  • [10] Two-dimensional periodic orbits in the field of a non-neutral.
    Higab, MA
    PHILOSOPHICAL MAGAZINE, 1929, 7 (45): : 783 - 792