Non-Bayesian Periodic Cramer-Rao Bound

被引:45
|
作者
Routtenberg, Tirza [1 ]
Tabrikian, Joseph [1 ]
机构
[1] Ben Gurion Univ Negev, Dept Elect & Comp Engn, IL-84105 Beer Sheva, Israel
基金
以色列科学基金会;
关键词
Cramer-Rao bound (CRB); Lehmann-unbiased; mean-square-error (MSE); mean-square-periodic-error (MSPE); non-Bayesian parameter estimation; periodic CRB; periodic-unbiased; PARAMETER-ESTIMATION; PERFORMANCE; ESTIMATORS; PHASE;
D O I
10.1109/TSP.2012.2231079
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The Cramer-Rao bound (CRB) is one of the most important tools for performance analysis in parameter estimation. In many practical periodic parameter estimation problems, the appropriate criterion is periodic in the parameter space. However, the CRB does not provide a valid lower bound in such problems. In this paper, the periodic CRB for non-Bayesian periodic parameter estimation is derived. The proposed periodic CRB is a lower bound on the mean-square-periodic-error (MSPE) of any periodic-unbiased estimator, where the periodic-unbiasedness is defined by using Lehmann-unbiasedness. It is shown that if there exists a periodic-unbiased estimator which achieves the bound, then the maximum likelihood produces it. The periodic CRB and the performance of some periodic-unbiased estimators are compared in terms of MSPE in a linear, Gaussian problem with modulo measurements and for phase estimation problems.
引用
收藏
页码:1019 / 1032
页数:14
相关论文
共 50 条
  • [1] Bayesian Periodic Cramer-Rao Bound
    Routtenberg, Tirza
    Tabrikian, Joseph
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 1878 - 1882
  • [2] The Risk-Unbiased Cramer-Rao Bound for Non-Bayesian Multivariate Parameter Estimation
    Bar, Shahar
    Tabrikian, Joseph
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (18) : 4920 - 4934
  • [3] A TIGHTER BAYESIAN CRAMER-RAO BOUND
    Bacharach, Lucien
    Fritsche, Carsten
    Orguner, Umut
    Chaumette, Eric
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 5277 - 5281
  • [4] THE BAYESIAN CRAMER-RAO LOWER BOUND IN ASTROMETRY
    Mendez, R. A.
    Echeverria, A.
    Silva, J.
    Orchard, M.
    [J]. VII REUNION DE ASTRONOMIA DINAMICA EN LATINOAMERICA (ADELA 2016), 2018, 50 : 23 - 24
  • [5] THE BAYESIAN CRAMER-RAO LOWER BOUND IN ASTROMETRY
    Mendez, R. A.
    Echeverria, A.
    Silva, J.
    Orchard, M.
    [J]. XV LATIN AMERICAN REGIONAL IAU MEETING, 2016, 2017, 49 : 52 - 52
  • [6] THE BAYESIAN CRAMER-RAO LOWER BOUND IN PHOTOMETRY
    Espinosa, Sebastian
    Silva, Jorge F.
    Mendez, Rene A.
    Orchard, Marcos
    [J]. VII REUNION DE ASTRONOMIA DINAMICA EN LATINOAMERICA (ADELA 2016), 2018, 50 : 50 - 51
  • [7] Asymptotically Tight Bayesian Cramer-Rao Bound
    Aharon, Ori
    Tabrikian, Joseph
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2024, 72 : 3333 - 3346
  • [8] MISSPECIFIED BAYESIAN CRAMER-RAO BOUND FOR SPARSE BAYESIAN LEARNING
    Pajovic, Milutin
    [J]. 2018 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2018, : 263 - 267
  • [9] On the Bayesian Cramer-Rao Bound for Markovian Switching Systems
    Svensson, Lennart
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (09) : 4507 - 4516
  • [10] Bayesian Cramer-Rao Bound for Multiple Targets Tracking in MIMO Radar Bayesian Cramer-Rao Bound for Multiple Targets Tracking in MIMO Radar
    Phuoc Vu
    Haimovich, Alexander M.
    Himed, Braham
    [J]. 2017 IEEE RADAR CONFERENCE (RADARCONF), 2017, : 938 - 942