Microbial bioanodes with high salinity tolerance for microbial fuel cells and microbial electrolysis cells

被引:75
|
作者
Rousseau, Raphael [1 ]
Dominguez-Benetton, Xochitl [1 ]
Delia, Marie-Line [1 ]
Bergel, Alain [1 ]
机构
[1] Univ Toulouse, INPT, CNRS, Lab Genie Chim, F-31432 Toulouse, France
关键词
Bioanode; Microbial anode; Salinity; Microbial fuel cell; Bioelectrochemical system; IONIC-STRENGTH; WASTE-WATER; PERFORMANCE; POWER;
D O I
10.1016/j.elecom.2013.04.002
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Increasing the conductivity of the electrolytes used in microbial electrochemical systems is an essential prerequisite to the large-scale success of these technologies. Microbial bioanodes formed from a salt marsh inoculum under constant acetate feeding generated up to 85 A.m(-2) in media containing 776 mM NaCl (45 g.L-1, 1.5 times the salinity of seawater). These values were the highest salinities accepted by a microbial anode so far and the highest current densities reported with felt graphite electrodes. (c) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 4
页数:4
相关论文
共 50 条
  • [1] Microbial community structure of anode electrodes in microbial fuel cells and microbial electrolysis cells
    Almatouq, Abdullah
    Babatunde, Akintunde O.
    Khajah, Mishari
    Webster, Gordon
    Alfodari, Mohammad
    [J]. JOURNAL OF WATER PROCESS ENGINEERING, 2020, 34
  • [2] Microbial fuel cells and microbial electrolysis cells for the production of bioelectricity and biomaterials
    Zhou, Minghua
    Yang, Jie
    Wang, Hongyu
    Jin, Tao
    Xu, Dake
    Gu, Tingyue
    [J]. ENVIRONMENTAL TECHNOLOGY, 2013, 34 (13-14) : 1915 - 1928
  • [3] The effect of high applied voltages on bioanodes of microbial electrolysis cells in the presence of chlorides
    Baek, Gahyun
    Shi, Le
    Rossi, Ruggero
    Logan, Bruce E.
    [J]. CHEMICAL ENGINEERING JOURNAL, 2021, 405
  • [4] Electrically conductive, immobilized bioanodes for microbial fuel cells
    Ganguli, R.
    Dunn, B.
    [J]. NANOTECHNOLOGY, 2012, 23 (29)
  • [5] Enrichment of Microbial Electrolysis Cell Biocathodes from Sediment Microbial Fuel Cell Bioanodes
    Pisciotta, John M.
    Zaybak, Zehra
    Call, Douglas F.
    Nam, Joo-Youn
    Logan, Bruce E.
    [J]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2012, 78 (15) : 5212 - 5219
  • [6] Performance of microbial electrolysis cells with bioanodes grown at different external resistances
    Rago, Laura
    Monpart, Nuria
    Cortes, Pilar
    Baeza, Juan A.
    Guisasola, Albert
    [J]. WATER SCIENCE AND TECHNOLOGY, 2016, 73 (05) : 1129 - 1135
  • [7] The electrochemical perspective of bioelectrocatalytic activities in microbial electrolysis and microbial fuel cells
    Yasri, Nael
    Roberts, Edward P. L.
    Gunasekaran, Sundaram
    [J]. ENERGY REPORTS, 2019, 5 : 1116 - 1136
  • [8] Life Cycle Assessment of High-Rate Anaerobic Treatment, Microbial Fuel Cells, and Microbial Electrolysis Cells
    Foley, Jeffrey M.
    Rozendal, Rene A.
    Hertle, Christopher K.
    Lant, Paul A.
    Rabaey, Korneel
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2010, 44 (09) : 3629 - 3637
  • [9] Microbial fuel cells under extreme salinity: performance and microbial analysis
    Monzon, Oihane
    Yang, Yu
    Yu, Cong
    Li, Qilin
    Alvarez, Pedro J. J.
    [J]. ENVIRONMENTAL CHEMISTRY, 2015, 12 (03) : 293 - +
  • [10] Capacitive Bioanodes Enable Renewable Energy Storage in Microbial Fuel Cells
    Deeke, Alexandra
    Sleutels, Tom H. J. A.
    Hamelers, Hubertus V. M.
    Buisman, Cees J. N.
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2012, 46 (06) : 3554 - 3560