Bayesian Tracking and Parameter Learning for Non-Linear Multiple Target Tracking Models

被引:18
|
作者
Jiang, Lan [1 ]
Singh, Sumeetpal S. [1 ]
Yildirim, Sinan [2 ]
机构
[1] Univ Cambridge, Dept Engn, Cambridge CB2 1TN, England
[2] Univ Bristol, Sch Math, Bristol BS8 1TW, Avon, England
基金
英国工程与自然科学研究理事会;
关键词
Multi-target tracking; Particle Markov Chain Monte Carlo; Particle Gibbs; model learning; state estimation; reversible jump MCMC;
D O I
10.1109/TSP.2015.2454474
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes a new Bayesian tracking and parameter learning algorithm for non-linear and non-Gaussian multiple target tracking (MTT) models. A Markov chain Monte Carlo (MCMC) algorithm is designed to sample from the posterior distribution of the target states, birth and death times, and association of observations to targets, which constitutes the solution to the tracking problem, as well as the model parameters. The numerical section presents performance comparisons with several competing techniques and demonstrates significant performance improvements in all cases.
引用
收藏
页码:5733 / 5745
页数:13
相关论文
共 50 条
  • [1] Gaussian process-based Bayesian non-linear filtering for online target tracking
    Lu, Kelin
    Sun, Changyin
    Zhu, Qian
    [J]. IET RADAR SONAR AND NAVIGATION, 2020, 14 (03): : 448 - 458
  • [2] Multi-Target Tracking by Online Learning of Non-linear Motion Patterns and Robust Appearance Models
    Yang, Bo
    Nevatia, Ram
    [J]. 2012 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2012, : 1918 - 1925
  • [3] A New Particle Filtering algorithm for Multiple Target Tracking with Non-linear Observations
    Jiang, Lan
    Singh, Sumeetpal S.
    Yildirim, Sinan
    [J]. 2014 17TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2014,
  • [4] Validation gating for non-linear non-gaussian target tracking
    Bailey, Tim
    Upcroft, Ben
    Durrant-Whyte, Hugh
    [J]. 2006 9TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION, VOLS 1-4, 2006, : 269 - 274
  • [5] Non-Myopic Target Tracking Strategies for Non-Linear Systems
    Zhang, Zhongshun
    Tokekar, Pratap
    [J]. 2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC), 2016, : 5591 - 5596
  • [6] Non-linear target trajectory prediction for robust visual tracking
    Long Xu
    Zhaofu Diao
    Ying Wei
    [J]. Applied Intelligence, 2022, 52 : 8588 - 8602
  • [7] Non-linear target trajectory prediction for robust visual tracking
    Xu, Long
    Diao, Zhaofu
    Wei, Ying
    [J]. APPLIED INTELLIGENCE, 2022, 52 (08) : 8588 - 8602
  • [8] Sequential linear filtering with non-linear position and Doppler measurements for target tracking
    Cheng, Ting
    Li, Lifu
    [J]. IET RADAR SONAR AND NAVIGATION, 2022, 16 (04): : 646 - 658
  • [9] A Bayesian approach to multiple target detection and tracking
    Morelande, Mark R.
    Kreucher, Christopher M.
    Kastella, Keith
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2007, 55 (05) : 1589 - 1604
  • [10] Bayesian Deghosting Algorithm for Multiple Target Tracking
    Kulmon, Pavel
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON MULTISENSOR FUSION AND INTEGRATION FOR INTELLIGENT SYSTEMS (MFI), 2020, : 367 - 372