Ground state solutions for quasilinear Schrodinger systems

被引:22
|
作者
Guo, Yuxia [2 ]
Tang, Zhongwei [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
[2] Tsinghua Univ, Dept Math, Beijing 100084, Peoples R China
关键词
Quasilinear Schrodinger systems; Orlicz space; Ground state solution; CRITICAL FREQUENCY; POSITIVE SOLUTIONS; SOLITON-SOLUTIONS; ELLIPTIC SYSTEM; STANDING WAVES; EQUATIONS; EXISTENCE;
D O I
10.1016/j.jmaa.2011.11.064
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the quasilinear Schrodinger systems in R-N: { -Delta u + (lambda a(x) + 1)u - 1/2 (Delta|u|(2)) u = 2 alpha/alpha+beta|u|(alpha-2) |nu|(beta) u, -Delta v + (lambda b(x) + 1)v - 1/2 (Delta|v|(2)) v = 2 beta/alpha+beta|u|(alpha) |nu|(beta-2) v, u(x) -> 0, v(x) -> 0 as |x| -> infinity, where lambda > 0 is a parameter, alpha > 2, beta >2, alpha + beta < 2.2* and 2* = 2N/2-2 for N >= 3, 2* = +infinity for N = 1, 2 is the critical Sobolev exponent. By using the Nehari manifold method and concentration compactness principle in the Orlicz space, we prove the existence of ground state solution which localize near the potential well int{a(-1) (0)} = int b(-1) (0) for lambda large enough. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:322 / 339
页数:18
相关论文
共 50 条