Non-Intersecting Squared Bessel Paths at a Hard-Edge Tacnode

被引:10
|
作者
Delvaux, Steven [1 ]
机构
[1] Univ Leuven KU Leuven, Dept Math, B-3001 Louvain, Belgium
关键词
MULTIPLE ORTHOGONAL POLYNOMIALS; BROWNIAN MOTIONS; PAINLEVE-II; ASYMPTOTICS;
D O I
10.1007/s00220-013-1815-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The squared Bessel process is a 1-dimensional diffusion process related to the squared norm of a higher dimensional Brownian motion. We study a model of n non-intersecting squared Bessel paths, with all paths starting at the same point a > 0 at time t = 0 and ending at the same point b > 0 at time t = 1. Our interest lies in the critical regime ab = 1/4, for which the paths are tangent to the hard edge at the origin at a critical time . The critical behavior of the paths for n -> a is studied in a scaling limit with time t = t (*) + O(n (-1/3)) and temperature T = 1 + O(n (-2/3)). This leads to a critical correlation kernel that is defined via a new Riemann-Hilbert problem of size 4 x 4. The Riemann-Hilbert problem gives rise to a new Lax pair representation for the Hastings-McLeod solution to the inhomogeneous Painlev, II equation q''(x) = xq(x) + 2q (3)(x) - nu, where nu = alpha + 1/2 with alpha > -1 the parameter of the squared Bessel process. These results extend our recent work with Kuijlaars and Zhang (Comm Pure Appl Math 64:1305-1383, 2011) for the homogeneous case nu = 0.
引用
收藏
页码:715 / 766
页数:52
相关论文
共 30 条
  • [1] Non-Intersecting Squared Bessel Paths at a Hard-Edge Tacnode
    Steven Delvaux
    Communications in Mathematical Physics, 2013, 324 : 715 - 766
  • [2] The hard edge tacnode process and the hard edge Pearcey process with non-intersecting squared Bessel paths
    Delvaux, Steven
    Veto, Balint
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2015, 4 (02)
  • [3] Non-Intersecting Squared Bessel Paths and Multiple Orthogonal Polynomials for Modified Bessel Weights
    Kuijlaars, A. B. J.
    Martinez-Finkelshtein, A.
    Wielonsky, F.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 286 (01) : 217 - 275
  • [4] Non-Intersecting Squared Bessel Paths and Multiple Orthogonal Polynomials for Modified Bessel Weights
    A. B. J. Kuijlaars
    A. Martínez-Finkelshtein
    F. Wielonsky
    Communications in Mathematical Physics, 2009, 286
  • [5] Non-intersecting squared Bessel paths with one positive starting and ending point
    Delvaux, S.
    Kuijlaars, A. B. J.
    Roman, P.
    Zhang, L.
    JOURNAL D ANALYSE MATHEMATIQUE, 2012, 118 : 105 - 159
  • [6] Non-Intersecting Squared Bessel Paths: Critical Time and Double Scaling Limit
    Kuijlaars, A. B. J.
    Martinez-Finkelshtein, A.
    Wielonsky, F.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 308 (01) : 227 - 279
  • [7] Non-intersecting squared Bessel paths with one positive starting and ending point
    Steven Delvaux
    Arno B. J. Kuijlaars
    Pablo Román
    Lun Zhang
    Journal d'Analyse Mathématique, 2012, 118 : 105 - 159
  • [8] Non-Intersecting Squared Bessel Paths: Critical Time and Double Scaling Limit
    A. B. J. Kuijlaars
    A. Martínez-Finkelshtein
    F. Wielonsky
    Communications in Mathematical Physics, 2011, 308 : 227 - 279
  • [9] Recurrence relations and vector equilibrium problems arising from a model of non-intersecting squared Bessel paths
    Kuijlaars, A. B. J.
    Roman, P.
    JOURNAL OF APPROXIMATION THEORY, 2010, 162 (11) : 2048 - 2077
  • [10] The hard-edge tacnode process for Brownian motion
    Ferrari, Patrik L.
    Veto, Balint
    ELECTRONIC JOURNAL OF PROBABILITY, 2017, 22