Statistical mechanics of a discrete Schrodinger equation with saturable nonlinearity

被引:11
|
作者
Samuelsen, Mogens R. [1 ]
Khare, Avinash [2 ]
Saxena, Avadh [3 ,4 ]
Rasmussen, Kim O. [3 ,4 ]
机构
[1] Tech Univ Denmark, Dept Phys, DK-2800 Lyngby, Denmark
[2] IISER, Pune 411021, Maharashtra, India
[3] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[4] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
来源
PHYSICAL REVIEW E | 2013年 / 87卷 / 04期
关键词
BREATHERS; SOLITONS;
D O I
10.1103/PhysRevE.87.044901
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the statistical mechanics of the one-dimensional discrete nonlinear Schrodinger (DNLS) equation with saturable nonlinearity. Our study represents an extension of earlier work [Phys. Rev. Lett. 84, 3740 ( 2000)] regarding the statistical mechanics of the one-dimensional DNLS equation with a cubic nonlinearity. As in this earlier study, we identify the spontaneous creation of localized excitations with a discontinuity in the partition function. The fact that this phenomenon is retained in the saturable DNLS is nontrivial, since in contrast to the cubic DNLS whose nonlinear character is enhanced as the excitation amplitude increases, the saturable DNLS, in fact, becomes increasingly linear as the excitation amplitude increases. We explore the nonlinear dynamics of this phenomenon by direct numerical simulations. DOI: 10.1103/PhysRevE.87.044901
引用
收藏
页数:4
相关论文
共 50 条