Applying semantic web technologies for phenome-wide scan using an electronic health record linked Biobank

被引:17
|
作者
Pathak, Jyotishman [1 ]
Kiefer, Richard C. [2 ]
Bielinski, Suzette J. [3 ]
Chute, Christopher G. [1 ]
机构
[1] Mayo Clin, Dept Hlth Sci Res, Div Biomed Stat & Informat, Rochester, MN 55905 USA
[2] Mayo Clin, Dept Informat Technol, Rochester, MN USA
[3] Mayo Clin, Div Epidemiol, Dept Hlth Sci Res, Rochester, MN USA
来源
关键词
MEDICAL-RECORDS; CANCER RISK; SERUM TSH; GENOME; ASSOCIATION; GENE; VARIANTS; HYPOTHYROIDISM; SUSCEPTIBILITY; POPULATION;
D O I
10.1186/2041-1480-3-10
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: The ability to conduct genome-wide association studies (GWAS) has enabled new exploration of how genetic variations contribute to health and disease etiology. However, historically GWAS have been limited by inadequate sample size due to associated costs for genotyping and phenotyping of study subjects. This has prompted several academic medical centers to form "biobanks" where biospecimens linked to personal health information, typically in electronic health records (EHRs), are collected and stored on a large number of subjects. This provides tremendous opportunities to discover novel genotype-phenotype associations and foster hypotheses generation. Results: In this work, we study how emerging Semantic Web technologies can be applied in conjunction with clinical and genotype data stored at the Mayo Clinic Biobank to mine the phenotype data for genetic associations. In particular, we demonstrate the role of using Resource Description Framework (RDF) for representing EHR diagnoses and procedure data, and enable federated querying via standardized Web protocols to identify subjects genotyped for Type 2 Diabetes and Hypothyroidism to discover gene-disease associations. Our study highlights the potential of Web-scale data federation techniques to execute complex queries. Conclusions: This study demonstrates how Semantic Web technologies can be applied in conjunction with clinical data stored in EHRs to accurately identify subjects with specific diseases and phenotypes, and identify genotype-phenotype associations.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Applying semantic web technologies for phenome-wide scan using an electronic health record linked Biobank
    Jyotishman Pathak
    Richard C Kiefer
    Suzette J Bielinski
    Christopher G Chute
    Journal of Biomedical Semantics, 3
  • [2] Large-scale phenome-wide scan in twins using electronic health records
    Hebbring, Scott J.
    Ye, Zhan
    Pathak, Jyotishman
    Mayer, John
    Cheng, Yijing
    Schrodi, Steven J.
    GENETIC EPIDEMIOLOGY, 2015, 39 (07) : 555 - 556
  • [3] Inference in the Electronic Health Record using Semantic Web Technologies
    Mamani-Macedo, N. A.
    Ticona-Pacheco, F.
    Canchumani, O. M.
    Jara, V. J. H.
    Pariona, J. R.
    2014 PAN AMERICAN HEALTH CARE EXCHANGES (PAHCE), 2014,
  • [4] The CADM2 Gene and Behavior: A Phenome-Wide Scan in UK-Biobank
    Pasman, Joelle A.
    Chen, Zeli
    Smit, Dirk J. A.
    Vink, Jacqueline M.
    Van Den Oever, Michel C.
    Pattij, Tommy
    De Vries, Taco J.
    Abdellaoui, Abdel
    Verweij, Karin J. H.
    BEHAVIOR GENETICS, 2022, 52 (4-5) : 306 - 314
  • [5] The CADM2 Gene and Behavior: A Phenome-Wide Scan in UK-Biobank
    Joëlle A. Pasman
    Zeli Chen
    Dirk J. A. Smit
    Jacqueline M. Vink
    Michel C. Van Den Oever
    Tommy Pattij
    Taco J. De Vries
    Abdel Abdellaoui
    Karin J. H. Verweij
    Behavior Genetics, 2022, 52 : 306 - 314
  • [6] PHENOME-WIDE ASSOCIATION STUDY BETWEEN ADHD POLYGENIC RISK AND ELECTRONIC HEALTH RECORD ICD-10 DIAGNOSIS CODES IN THE ESTONIAN BIOBANK
    Haan, Elis
    Krebs, Kristi
    Vosa, Urmo
    Lehto, Kelli
    EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2021, 51 : E96 - E97
  • [7] Quantifying the phenome-wide disease burden of obesity using electronic health records and genomics
    Robinson, Jamie R.
    Carroll, Robert J.
    Bastarache, Lisa
    Chen, Qingxia
    Pirruccello, James
    Mou, Zongyang
    Wei, Wei-Qi
    Connolly, John
    Mentch, Frank
    Crane, Paul K.
    Hebbring, Scott J.
    Crosslin, David R.
    Gordon, Adam S.
    Rosenthal, Elisabeth A.
    Stanaway, Ian B.
    Hayes, M. Geoffrey
    Wei, Wei
    Petukhova, Lynn
    Namjou-Khales, Bahram
    Zhang, Ge
    Safarova, Mayya S.
    Walton, Nephi A.
    Still, Christopher
    Bottinger, Erwin P.
    Loos, Ruth J. F.
    Murphy, Shawn N.
    Jackson, Gretchen P.
    Abumrad, Naji
    Kullo, Iftikhar J.
    Jarvik, Gail P.
    Larson, Eric B.
    Weng, Chunhua
    Roden, Dan
    Khera, Amit V.
    Denny, Joshua C.
    OBESITY, 2022, 30 (12) : 2477 - 2488
  • [8] Exploring the clinical and genetic associations of adult weight trajectories using electronic health records in a racially diverse biobank: a phenome-wide and polygenic risk study
    Xu, Jiayi
    Johnson, Jessica S.
    Signer, Rebecca
    Birgegard, Andreas
    Jordan, Jennifer
    Kennedy, Martin A.
    Landen, Mikael
    Maguire, Sarah L.
    Martin, Nicholas G.
    Mortensen, Preben Bo
    Petersen, Liselotte, V
    Thornton, Laura M.
    Bulik, Cynthia M.
    Huckins, Laura M.
    LANCET DIGITAL HEALTH, 2022, 4 (08): : E604 - E614
  • [9] Genome-wide and Phenome-wide Approaches to Understand Variable Drug Actions in Electronic Health Records
    Robinson, Jamie R.
    Denny, Joshua C.
    Roden, Dan M.
    Van Driest, Sara L.
    CTS-CLINICAL AND TRANSLATIONAL SCIENCE, 2018, 11 (02): : 112 - 122
  • [10] Phenome-wide association study (PheWAS) of colorectal cancer risk SNP effects on health outcomes in UK Biobank
    Zhang, Xiaomeng
    Li, Xue
    He, Yazhou
    Law, Philip J.
    Farrington, Susan M.
    Campbell, Harry
    Tomlinson, Ian P. M.
    Houlston, Richard S.
    Dunlop, Malcolm G.
    Timofeeva, Maria
    Theodoratou, Evropi
    BRITISH JOURNAL OF CANCER, 2022, 126 (05) : 822 - 830