Artificial intelligence in electrostatic risk management

被引:2
|
作者
Gulyas, Attila [1 ]
Kiss, Istvan [1 ]
Berta, Istvan [1 ]
机构
[1] Budapest Univ Technol & Econ, Dept Power Engn, H-1111 Budapest, Hungary
关键词
Risk management; Hazard management; SCOUT system; Artificial intelligence; Support vector machines; NEURAL-NETWORKS; SYSTEM;
D O I
10.1016/j.elstat.2012.12.010
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In the last two decades protection against electrostatic hazards became a very important topic. The increase in the range of possible faults fast automated systems and complex fault analysis is required. The tools of artificial intelligence and expert systems have been applied successfully on this field and this paper aims to take a step further. While giving some insight to the currently used tools, another Al method, the 'support vector machines' are introduced in this paper. Besides a brief review on SVMs they are introduced to the SCOUT system, a novel approach to electrostatic hazard management. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:387 / 391
页数:5
相关论文
共 50 条
  • [2] Contributions of Artificial Intelligence in Operational Risk Management
    Carvalho, Maria Carolina
    Goncalves, Rui
    da Costa, Renato Lopes
    Pereira, Leandro Ferreira
    Dias, Alvaro
    INTERNATIONAL JOURNAL OF INTELLIGENT INFORMATION TECHNOLOGIES, 2022, 18 (01)
  • [3] Application of Artificial Intelligence in Financial Risk Management
    Hu, Wanting
    Chen, Yixian
    ARTIFICIAL INTELLIGENCE AND SECURITY, ICAIS 2022, PT I, 2022, 13338 : 180 - 188
  • [4] AIRMan: An Artificial Intelligence (AI) Risk Management System
    Tjoa, Simon
    Kieseberg, Peter
    Temper, Marlies
    Zanol, Jakob
    Wagner, Markus
    Holzinger, Andreas
    2022 INTERNATIONAL CONFERENCE ON ADVANCED ENTERPRISE INFORMATION SYSTEM, AEIS, 2022, : 72 - 81
  • [5] CHALLENGES OF ARTIFICIAL INTELLIGENCE APPLICATION FOR DISASTER RISK MANAGEMENT
    Velev, D.
    Zlateva, P.
    39TH INTERNATIONAL SYMPOSIUM ON REMOTE SENSING OF ENVIRONMENT ISRSE-39 FROM HUMAN NEEDS TO SDGS, VOL. 48-M-1, 2023, : 387 - 394
  • [6] Risk Assessment and Cholangiocarcinoma: Diagnostic Management and Artificial Intelligence
    Granata, Vincenza
    Fusco, Roberta
    De Muzio, Federica
    Cutolo, Carmen
    Grassi, Francesca
    Brunese, Maria Chiara
    Simonetti, Igino
    Catalano, Orlando
    Gabelloni, Michela
    Pradella, Silvia
    Danti, Ginevra
    Flammia, Federica
    Borgheresi, Alessandra
    Agostini, Andrea
    Bruno, Federico
    Palumbo, Pierpaolo
    Ottaiano, Alessandro
    Izzo, Francesco
    Giovagnoni, Andrea
    Barile, Antonio
    Gandolfo, Nicoletta
    Miele, Vittorio
    BIOLOGY-BASEL, 2023, 12 (02):
  • [7] Virtual Enterprise Risk Management Using Artificial Intelligence
    Chen, Hanning
    Zhu, Yunlong
    Hu, Kunyuan
    Li, Xuhui
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2010, 2010
  • [8] Artificial intelligence techniques for flood risk management in urban environments
    Sayers, W.
    Savic, D.
    Kapelan, Z.
    Kellagher, R.
    12TH INTERNATIONAL CONFERENCE ON COMPUTING AND CONTROL FOR THE WATER INDUSTRY, CCWI2013, 2014, 70 : 1505 - 1512
  • [9] Risk Assessment and Pancreatic Cancer: Diagnostic Management and Artificial Intelligence
    Granata, Vincenza
    Fusco, Roberta
    Setola, Sergio Venanzio
    Galdiero, Roberta
    Maggialetti, Nicola
    Silvestro, Lucrezia
    De Bellis, Mario
    Di Girolamo, Elena
    Grazzini, Giulia
    Chiti, Giuditta
    Brunese, Maria Chiara
    Belli, Andrea
    Patrone, Renato
    Palaia, Raffaele
    Avallone, Antonio
    Petrillo, Antonella
    Izzo, Francesco
    CANCERS, 2023, 15 (02)
  • [10] Navigating the Power of Artificial Intelligence in Risk Management: A Comparative Analysis
    Yazdi, Mohammad
    Zarei, Esmaeil
    Adumene, Sidum
    Beheshti, Amin
    SAFETY, 2024, 10 (02)