Metal oxide decorated porous carbons from controlled calcination of a metal-organic framework

被引:10
|
作者
Day, Gregory S. [1 ,2 ]
Li, Jialuo [2 ]
Joseph, Elizabeth A. [2 ]
Metz, Peter C. [1 ]
Perry, Zachary [2 ]
Ryder, Matthew R. [1 ]
Page, Katharine [3 ]
Zhou, Hong-Cai [2 ,4 ]
机构
[1] Oak Ridge Natl Lab, Neutron Scattering Div, POB 2009, Oak Ridge, TN 37831 USA
[2] Texas A&M Univ, Dept Chem, College Stn, TX 77843 USA
[3] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37916 USA
[4] Texas A&M Univ, Dept Mat Sci, College Stn, TX 77843 USA
来源
NANOSCALE ADVANCES | 2020年 / 2卷 / 07期
关键词
ACTIVATED CARBON; NANOPOROUS CARBON; OXYGEN REDUCTION; MOF; EFFICIENT; ELECTROCATALYSTS; NANOCOMPOSITE; NANOPARTICLES; PERFORMANCE; SEPARATION;
D O I
10.1039/c9na00720b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Thermal decomposition of an iron-based MOF was conducted under controlled gas environments to understand the resulting porous carbon structure. Different phases and crystallite sizes of iron oxide are produced based on the specific gas species. In particular, air resulted in iron(iii) oxide, and D2O and CO2 resulted in the mixed valent iron(ii,iii) oxide. Performing the carbonization under non-oxidative or reducing conditions (N-2, He, H-2) resulted in the formation of a mixture of both iron(ii,iii) oxide and iron(iii) oxide. Based on in situ and air-free handling experiments, it was observed that this is partially due to the formation of zero-valent iron metal that is rapidly oxidized when exposed to air. Neutron pair distribution function analysis provided insight into the effect of the gas environment on the local structure of the porous carbon, indicating a noticeable change in local order between the D2O and the N-2 calcined samples.
引用
收藏
页码:2758 / 2767
页数:10
相关论文
共 50 条
  • [1] Porous carbons prepared by using metal-organic framework as the precursor for supercapacitors
    Hu, Juan
    Wang, Huanlei
    Gao, Qiuming
    Guo, Hongliang
    [J]. CARBON, 2010, 48 (12) : 3599 - 3606
  • [2] Controlled Metal Oxide and Porous Carbon Templation Using Metal-Organic Frameworks
    Day, Gregory S.
    Drake, Hannah F.
    Contreras-Ramirez, Aida
    Ryder, Matthew R.
    Page, Katharine
    Zhou, Hong-Cai
    [J]. CRYSTAL GROWTH & DESIGN, 2021, 21 (08) : 4249 - 4258
  • [3] Porous Metal-Organic Framework Nanoparticles
    Casas-Solvas, Juan M.
    Vargas-Berenguel, Antonio
    [J]. NANOMATERIALS, 2022, 12 (03)
  • [4] Piezochromic Porous Metal-Organic Framework
    Andrzejewski, Michal
    Katrusiak, Andrzej
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2017, 8 (01): : 279 - 284
  • [5] High Volumetric Hydrogen Adsorption in a Porous Anthracene-Decorated Metal-Organic Framework
    Yan, Yong
    da Silva, Ivan
    Blake, Alexander J.
    Dailly, Anne
    Manuel, Pascal
    Yang, Sihai
    Schroder, Martin
    [J]. INORGANIC CHEMISTRY, 2018, 57 (19) : 12050 - 12055
  • [6] Diversity in porous metal-organic framework materials
    [J]. 1600, Indian Institute of Science (94):
  • [7] Diversity in Porous Metal-Organic Framework Materials
    Mahata, Partha
    Natarajan, Srinivasan
    [J]. JOURNAL OF THE INDIAN INSTITUTE OF SCIENCE, 2014, 94 (01) : 79 - 93
  • [8] Hierarchical porous metal-organic framework monoliths
    Ahmed, Adham
    Forster, Mark
    Clowes, Rob
    Myers, Peter
    Zhang, Haifei
    [J]. CHEMICAL COMMUNICATIONS, 2014, 50 (92) : 14314 - 14316
  • [9] Why Design Matters: From Decorated Metal Oxide Clusters to Functional Metal-Organic Frameworks
    Schoedel, Alexander
    Rajeh, Sahar
    [J]. TOPICS IN CURRENT CHEMISTRY, 2020, 378 (01)
  • [10] Aqueous phase nitric oxide detection by an amine-decorated metal-organic framework
    Desai, Aamod V.
    Samanta, Partha
    Manna, Biplab
    Ghosh, Sujit K.
    [J]. CHEMICAL COMMUNICATIONS, 2015, 51 (28) : 6111 - 6114