Schemes for and Mechanisms of Reduction in Thermal Conductivity in Nanostructured Thermoelectrics

被引:19
|
作者
Zhang, Xiaoliang [1 ]
Hu, Ming [1 ]
Giapis, Konstantinos P. [2 ]
Poulikakos, Dimos [1 ]
机构
[1] ETH, Dept Mech & Proc Engn, Lab Thermodynam Emerging Technol, CH-8092 Zurich, Switzerland
[2] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA
来源
关键词
Si nanowire; core-shell; thermal conductivity; thermoelectric materials; molecular dynamics; MOLECULAR-DYNAMICS SIMULATION; SILICON NANOWIRES; BEAM EPITAXY; GAN; GROWTH; ORDER; ALN; SI; ENHANCEMENT; POTENTIALS;
D O I
10.1115/1.4006750
中图分类号
O414.1 [热力学];
学科分类号
摘要
Nonequilibrium molecular dynamics (NEMD) simulations were performed to investigate schemes for enhancing the energy conversion efficiency of thermoelectric nanowires (NWs), including (1) roughening of the nanowire surface, (2) creating nanoparticle inclusions in the nanowires, and (3) coating the nanowire surface with other materials. The enhancement in energy conversion efficiency was inferred from the reduction in thermal conductivity of the nanowire, which was calculated by imposing a temperature gradient in the longitudinal direction. Compared to pristine nanowires, our simulation results show that the schemes proposed above lead to nanocomposite structures with considerably lower thermal conductivity (up to 82% reduction), implying similar to 5X enhancement in the ZT coefficient. This significant effect appears to have two origins: (1) increase in phonon-boundary scattering and (2) onset of interfacial interference. The results suggest new fundamental-yet realizable ways to improve markedly the energy conversion efficiency of nanostructured thermoelectrics. [DOI: 10.1115/1.4006750]
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Thermal conductivity reduction mechanisms in superlattices
    Chen, G
    Dames, C
    Harris, T
    Borca-Tasiuc, D
    Yang, RG
    Yang, B
    Liu, WL
    Song, D
    Takashiri, M
    TWENTY-SECOND INTERNATIONAL CONFERENCE ON THERMOELECTRICS, PROCEEDINGS ICT '03, 2003, : 336 - 341
  • [2] Phonons and thermal conductivity in skutterudite thermoelectrics
    Kendziora, CA
    Nolas, GS
    THERMOELECTRIC MATERIALS 2003-RESEARCH AND APPLICATIONS, 2004, 793 : 107 - 112
  • [3] On The Thermal Conductivity of Conjugated Polymers for Thermoelectrics
    Rodriguez-Martinez, Xabier
    Saiz, Fernan
    Dorling, Bernhard
    Marina, Sara
    Guo, Jiali
    Xu, Kai
    Chen, Hu
    Martin, Jaime
    McCulloch, Iain
    Rurali, Riccardo
    Reparaz, Juan Sebastian
    Campoy-Quiles, Mariano
    ADVANCED ENERGY MATERIALS, 2024, 14 (35)
  • [4] Anharmoncity and low thermal conductivity in thermoelectrics
    Chang, Cheng
    Zhao, Li-Dong
    MATERIALS TODAY PHYSICS, 2018, 4 : 50 - 57
  • [5] Thermal Conductivity Reduction by Fluctuation of the Filling Fraction in Filled Cobalt Antimonide Skutterudite Thermoelectrics
    Serrano-Sanchez, F.
    Prado-Gonjal, J.
    Nemes, N. M.
    Biskup, N.
    Dura, O. J.
    Martinez, J. L.
    Fernandez-Diaz, M. T.
    Fauth, F.
    Alonso, J. A.
    ACS APPLIED ENERGY MATERIALS, 2018, 1 (11): : 6181 - 6189
  • [6] A novel nano-configuration for thermoelectrics: helicity induced thermal conductivity reduction in nanowires
    Varshney, Vikas
    Roy, Ajit K.
    Dudis, Douglas S.
    Lee, Jonghoon
    Farmer, Barry L.
    NANOSCALE, 2012, 4 (16) : 5009 - 5016
  • [7] Nanostructured thermoelectrics
    Pichanusakorn, Paothep
    Bandaru, Prabhakar
    MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2010, 67 (2-4): : 19 - 63
  • [8] Thermal Conductivity and ZT in Disordered Organic Thermoelectrics
    H. L. Kwok
    Journal of Electronic Materials, 2013, 42 : 355 - 358
  • [9] Thermal Conductivity and ZT in Disordered Organic Thermoelectrics
    Kwok, H. L.
    JOURNAL OF ELECTRONIC MATERIALS, 2013, 42 (03) : 355 - 358
  • [10] ATOMISTIC MECHANISMS OF ENHANCING ENERGY CONVERSION EFFICIENCY OF NANOSTRUCTURED THERMOELECTRICS
    Hu, Ming
    Zhang, Xiaoliang
    Giapis, Konstantinos P.
    Poulikakos, Dimos
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2011, VOL 4, PTS A AND B, 2012, : 1695 - 1702