A note on "Constructing matrices with prescribed off-diagonal submatrix and invariant polynomials"

被引:0
|
作者
Borobia, Alberto [1 ]
Canogar, Roberto [1 ]
机构
[1] Univ Nacl Educ Distancia, Dpto Matemat, Madrid 28040, Spain
关键词
inverse eigenvalue problem; matrix completion problem;
D O I
10.1016/j.laa.2008.05.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let F be any field and let B a matrix of F-qxp. Zaballa found necessary and sufficient conditions for the existence of a matrix A = [A(ij)](i,j) epsilon {1, 2} epsilon F(p+q)x(p+q) with prescribed similarity class and such that A(21) = B. In an earlier paper [A. Borobia, R. Canogar, Constructing matrices with prescribed off-diagonal submatrix and invariant polynomials, Linear Algebra Appl. 424 (2-3) (2007) 615-633] we obtained, for fields of characteristic different from 2, a finite step algorithm to construct A when it exists. In this short note we extend the algorithm to any field. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:1684 / 1686
页数:3
相关论文
共 50 条